

Grant Agreement N° 780351

Copyright © 2019 by the ENACT consortium – All rights reserved.

The research leading to these results has received funding from the European Community's
H2020 Programme under grant agreement n° 780351 (ENACT).

Title: Risk-driven Continuous Delivery of Trustworthy Smart IoT Systems —
First Version

Authors: Jacek Dominiak (BAW), Nicolas Ferry (SINTEF), Elena González (BAW),
Stéphane Lavirotte (CNRS), Brice Morin (SINTEF), Victor Muntés
(BAW), Phu H. Nguyen (SINTEF), Alexander Palm (UDE), Angel Rego
(TECNALIA), Jean Yves Tigli (CNRS)

Editors: Nicolas Ferry (SINTEF), Phu H. Nguyen (SINTEF)

Reviewers: Erkuden Rios (TECNALIA), Uģis Grīnbergs (BOSC)

Identifier: Deliverable # D2.2 v1.0

Nature: Report

Date: 30 June 2019

Status: Delivered

Diss. level: Public

Executive Summary
D2.2 provides the first version of the ENACT Continuous Delivery toolkit (including the
Orchestration and Continuous Deployment Enabler and the Test, Simulation and Emulation
Enabler), the Risk Management Enabler, and the Actuation Conflict Management Enabler. In
particular, in this document, we provide an overall as well as a technical presentation of each of
the enablers developed in WP2.

Ref. Ares(2019)4295935 - 05/07/2019

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 2

Members of the ENACT consortium:

SINTEF AS Norway

BEAWRE DIGITAL SL Spain
MONTIMAGE France

EVIDIAN SA France

INDRA Sistemas SA Spain

Fundación Tecnalia Research & Innovation Spain

TellU AS Norway

Centre National de la Recherche Scientifique France

Universitaet Duisburg-Essen Germany

Istituto per Servizi di Ricovero e Assistenza agli Anziani Italy

Baltic Open Solution Center Latvia

Elektronikas un Datorzinatnu Instituts Latvia

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 3

Revision history
Date Version Author Comments
01 December Initial Nicolas Ferry (SINTEF) Outline and summaries
13 February Initial Nicolas Ferry (SINTEF) Introduction
13 May Draft Nicolas Ferry, Brice

Morin, Phu Nguyen
(SINTEF)

Almost complete version of section
3

24 May Draft Jean-Yves tigli, Stéphane
Lavirotte (CNRS)

Almost complete version of Section
4

4 June Draft Nicolas Ferry, Phu
Nguyen (SINTEF)

Final version section 3

4 June Draft Jacek Dominiak Draft version section 2
5 June Draft Jean-Yves tigli, Stéphane

Lavirotte (CNRS)
Final version section 4

5 June Draft Elena González (Beawre) Draft version section 2
5 June Draft Victor Muntés (Beawre) Review draft version section 2 +

further contributions to section 2
11 June Draft Nicolas Ferry (SINTEF) Final version of Section 1 and 6
11 June Draft Jean Yves Tigli (CNRS) Update Section 4 after WP2 internal

review
19 June Draft Erkuden Rios Internal Review
25 June Draft Ugis Grisberg Internal Review
27 June Final Nicolas Ferry (SINTEF),

Phu Nguyen (SINTEF),
Victor Muntes (Beawre),
Jean Yves Tigli (CNRS)

Update based Internal Reviews

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 4

Contents

CONTENTS	..	4

1 INTRODUCTION	..	6

 CONTEXT	AND	OBJECTIVES	..	6
 ACHIEVEMENTS	..	8
 STRUCTURE	OF	THE	DOCUMENT	...	9

2 AGILE	AND	CONTINUOUS	RISK	MANAGEMENT	...	11

 OVERALL	PRESENTATION	OF	THE	ENABLER	...	11
 Motivation	...	11
 Background	tool	architecture:	MUSA	...	14

 TECHNICAL	PRESENTATION	AND	HIGHLIGHTS	...	15
 Risk	Management	Methodology	..	16

 SYNTHESIS	...	20

3 CONTINUOUS	ORCHESTRATION	AND	DEPLOYMENT	OF	SIS	21

 OVERALL	PRESENTATION	OF	THE	ENABLER	...	22
 Motivating	example	..	22
 Overall	approach	..	25

 TECHNICAL	PRESENTATION	AND	HIGHLIGHTS	...	27
 The	GeneSIS	Modelling	Language	..	27
 The	GeneSIS	execution	engine	..	31
 Model-based,	Platform-independent	Logging	of	the	deployed	SIS	37

 INTEGRATION	WITH	EXISTING	PLATFORMS	..	48
 SYNTHESIS	...	50

4 IDENTIFYING,	ANALYSING	AND	MANAGING	ACTUATION	CONFLICTS	53

 OVERALL	PRESENTATION	OF	THE	ENABLER	...	53
 Illustration	and	Motivation	...	53
 Overall	Approach	...	56
 Highlights	..	58

 TECHNICAL	PRESENTATION	..	59
 Actuation	Conflict	Detection	and	Solving	for	large	scale	SIS	59
 Designing	Safe	and	Reliable	Custom	Actuation	Conflict	Manager	63
 ACM	Enabler	V1	Illustration	...	67

 SYNTHESIS	...	70

5 TEST	AND	SIMULATION	FOR	SIS	..	72

 OVERALL	PRESENTATION	OF	THE	ENABLER	..	72
 Motivation	...	73
 Overall	approach	to	Test	and	Simulation	...	75

 TECHNICAL	PRESENTATION	AND	HIGHLIGHTS	...	75
 FUTURE	PLANS	...	76
 SYNTHESIS	...	78

6 CONCLUSION	...	80

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 5

APPENDIX	A	..	81

1 RISK	MANAGEMENT	--	USER	GUIDE	..	81

2 GENESIS	–	USER	GUIDE	..	82

 INSTALLATION	..	82
 Pre-requisite:	...	82
 From	git:	..	83
 From	DockerFile:	..	83
 From	the	public	Docker	image:	..	84

 TUTORIALS	AND	EXAMPLES	..	84

3 ACTUATION	CONFLICT	MANAGER	–	USER	GUIDE	..	84

 INSTALLATION	..	85
 Pre-requisite:	...	85
 Installation	from	git:	..	85
 Run	from	git	sources:	...	85

 EXAMPLES	AND	TUTORIALS:	...	86

4 TEST	AND	SIMULATION	–	USER	GUIDE	..	86

REFERENCES	...	86

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 6

1 Introduction
This document presents current achievements in building the first version of the ENACT
Continuous Delivery toolkit (including the Orchestration and Continuous Deployment Enabler
and the Test, Simulation and Emulation Enabler), the Risk Management Enabler, and the
Actuation Conflict Management Enabler. In Section 1.1, we give an overview of the context of
objectives of this work. Section 1.2 highlights the main achievements of our work presented in
this document. Finally, we present in Section 1.3 the structure of the main content in this
document.

 Context and objectives
In order to fully exploit the potential of the IoT, it is important to facilitate the creation and
operation of the next generation IoT systems that we denote as Smart IoT Systems (SIS). SIS
typically need to perform distributed processing and coordinated behaviour across IoT, edge
and Cloud infrastructures, manage the closed loop from sensing to actuation, and cope with vast
heterogeneity, scalability and dynamicity of IoT systems and their environments.

Major challenges are to improve the efficiency and the collaboration between operator and
developer teams for rapid and agile design and evolution of SIS. To address these challenges,
ENACT embraces the DevOps approach and principles. DevOps has recently emerged as a
software development practice that encourages developers continuously patch, update, or bring
new features to the system under operation without sacrificing quality. Software development
and delivery of SIS would greatly benefit from DevOps as devices and IoT services
requirements for reliability, quality, security, privacy and safety are paramount. However, even
if DevOps is not bound to any application domain, many challenges appear when the IoT and
its requirements for trustworthiness intersect with DevOps. As a result, DevOps practices are
far from widely adopted in IoT, in particular, due to a lack of key enabling tools.

WP2 will deliver a set of tools for the development part of the DevOps process (see blue part
of Figure 1). These tools aim at improving the management and continuous delivery of
trustworthy SIS. Note that there are other tools, which are developed in the WP3 and
WP4 of the project to cover the whole DevOps process.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 7

Figure 1. WP2 focuses on the Dev part of the DevOps process.

In particular, WP2 will develop four enablers:

1. The ENACT Risk Management Enabler: This enabler will support DevOps engineers
and architects in managing risks in an agile and continuous way, also supporting the
overall development process of trustworthy SIS.

2. The ENACT Orchestration and Continuous Deployment Enabler (aka., GeneSIS):
This enabler will facilitate the development and continuous deployment of trustworthy
SIS, allowing decentralized processing across heterogeneous IoT, edge, and cloud
infrastructures. GeneSIS includes: (i) a domain-specific modelling language to model
the orchestration and deployment of SIS; and (ii) an execution engine that supports the
orchestration of IoT, edge, and cloud services as well as their automatic deployment
across IoT, edge, and cloud infrastructure resources.

3. The ENACT Actuation Conflict Management Enabler: Actuation conflicts can occur
when concurrent applications have a shared access to an actuator and when actuators
produce actions within a common physical and local environment, whose effects are
contradictory. This enabler will support the identification, analysis and resolution of
actuation conflicts.

4. The ENACT Test and Simulation Enabler: IoT systems need to cope with the
uncertainty related to the physical world (e.g., communication links may fail, nodes may
run out of battery, etc.). The delivery model advocated to manage this uncertainty should
provide proper support to assess the system’s behaviour and trustworthiness early in the
life cycle. ENACT will deliver an enabler to test smart IoT systems.

Figure 2 depicts an example of workflow between these four enablers. First, a DevOps engineer
can use GeneSIS to specify the overall architecture of a SIS (①). This model can thus serve as
input for the Risk Management enabler, which will help conducting a risk analysis and
assessment and may result in a set of mitigation actions, for instance advocating the use of a
specific set of security mechanisms (②). As a result, the DevOps engineer may update the
model describing the architecture of the SIS before its refinement into a proper deployment

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 8

model. The DevOps engineer might also use ThingML in order to implement some of the
software components that should be deployed as part of the SIS (③). At this stage, the
Actuation Conflict Management enabler can be used to identify actuation conflicts - e.g.,
concurrent accesses to an actuator (④). This enabler will support the DevOps engineer in either
selecting or designing an actuation conflict manager to be deployed as part of the SIS (typically
as a proxy managing the accesses to the actuator). Finally, the SIS can be simulated and tested,
in particular against security threats and scalability issues (⑤) before being deployed by
GeneSIS.

Figure 2. An example of workflow between WP2 tools

Deliverable D2.2 consists of (i) first version of the ENACT Continuous Delivery toolkit
(including the Orchestration and Continuous Deployment Enabler and the Test, Simulation and
Emulation Enabler), the Risk Management Enabler, and the Actuation Conflict Management
Enabler; together with (ii) this document, which provides a technical description and the
necessary documentation to use each of the enablers.

 Achievements
The following table summarizes the main achievement of WP2 for the release of D2.2.

Table 1. Table of achievements

Objectives Achievements

Provide first version of
each enabler of WP2

Based on the theoretical foundations gained in D2.1 we developed
initial versions of the different WP2 enablers. This includes not
only the actual source code of the tool but also the specification of
the models manipulated by the tool. All the implementations are
available online in the ENACT repository. More precisely:

• The initial design and implementation of the Risk
management enabler, which provide users with a way to
express any type of risks and enablers to relate the risks

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 9

among them. It adopts a Kanban-like presentation to show
the status of the risk analysis process and a mock-up of a
dashboard to detect exceptions related to the risk analysis
process.

• The initial implementation of the Orchestration and
deployment enabler (modelling language and execution
environment), supporting deployment over IoT, Edge and
Cloud infrastructure. Initial integration with SMOOL,
FIWARE, and Microsoft IoT Hub.

• ThingML has been integrated together with the
Orchestration and deployment enabler. Moreover,
ThingML has been with monitoring mechanism to
facilitate the debugging of ThingML programs, including
on small devices, i.e., logs at the ThingML level in a
platform independent way. In the future, these logs will be
accessible through the Orchestration and deployment
enabler.

• The initial implementation of the Actuation Conflict
Management enabler. This includes a first implementation
of a tool to support the design of custom actuation conflict
managers with guarantees on logical properties. A first
implementation of the tool to identify actuation conflicts
in large-scale SIS. First off-the shelf actuation conflict
managers.

• The initial conceptual design of the Test and simulation
enabler.

Provide description of
conceptual solution of
each tool

We developed a conceptual solution for each tool as described in
this deliverable, which laid the foundation for the corresponding
tool implementation. In addition, we evaluated the status of the
enablers with respect to the requirements defined in D2.1.

Provide documentation

To guide the use of the enablers, they are released together with a
first version of the online documentation available on the ENACT
git repository (https://gitlab.com/enact). In particular, this
includes: a README detailing how to install, set up and start the
enabler, at least one tutorial, and a set of examples.

 Structure of the document
The remainder of the document follows the structure of WP2 and is composed of the following
four Sections. Section 2 focuses on the enable for the agile and continuous risk management of
SIS. Section 2 presents the enabler for the continuous orchestration and deployment of SIS.
Section 4 describes the status of the enabler for the management of actuation conflicts. Section
5 covers the presentation of the test and simulation enabler. In each of these sections, an overall
presentation of the enabler is provided before the main technical results and highlight are
presented. Thus, an evaluation of the status of the enabler with respect to the requirements
defined in D2.1 and D1.1 is provided. Finally, Section 6 draws some conclusion. At the end of
the document appendices provide details about the implementations of the enablers as well as

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 10

some initial guidelines to use the enablers. It is worth noting that for each of the enablers, more
detailed instructions and tutorials can be found in their code repository in the ENACT git
repository (https://gitlab.com/enact)

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 11

2 Agile and Continuous Risk Management
 Overall presentation of the enabler

Risk Management has been a center piece of decision making for decades. More so in critical
infrastructures and IoT agglomerations. The current proposed Risk Management enabler of
ENACT is an evolution of the MUSA1 (H2020 Project No 644429) Risk Management tool
which focuses in assessing risks and mitigation actions of Cloud Security focusing primarily
on security related risks.

ENACT Risk Management opens the scope of the risk assessment to any type of risks where
the user is free to express the scope of risks from non-intangible non-technical risks down to
the tangible technical risks which in effect dictate actionable mitigation actions which need to
be included in the DevOps process.

The novelty of the tool comes from the fact; Risk Management shall be approached in a
continuous and agile fashion, which the tool facilitates. ENACT Risk Management enabler
aims at embedding risk management in an agile development context in a non-intrusive way.
In particular, we try to solve several different challenges presented in [Mun18], namely:

• Traditional risk analysis practices for software development do not easily translate to
Agile.

• Analysis of risks should be continuous.
• Development teams (i.e., scrum teams) do not have enough expertise on risk analysis.
• Tools to manage risk in Agile do not foster collaboration.

Besides, in the particular context of IoT, new threats arise from combining several components
together. Current technology for risk management is mostly focused in detecting threats on
specific isolated assets. However, the composition of different assets may also be the origin of
new vulnerabilities and threats. ENACT Risk Management enabler will also consider this
aspect and provide mechanisms for multi-asset vulnerability and threat definitions.

 Motivation
We devote a brief subsection to explain the usual scenario we may find in a software/IT
company when it comes to managing risks. This scenario is particularly relevant in highly
regulated markets where companies need to comply with existing standards such as ISO27001
for security for instance or they need to prove that they follow a risk-based approach as required
by GDPR.

Companies have risk management owners in the organization. The exact role they play may
depend a lot on the type of company and the type of requirements this company may have. For
instance, the company may have a Chief Security Officer (CSO), a Data Privacy Officer (DPO)
as requested in some situations by GDPR, etc. In large organization, it is common to have risk
analysts to support the risk management process, while in SMEs this is typically a role that staff
playing other roles play. Companies that are truly following DevOps principles, tend to make

1 H2020 MUSA project: https://www.musa-project.eu/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 12

decisions around risk in a collegial manner, involving product owners, risk analysts, developers,
operations, etc.
In this context, companies need to face many challenges, including coping with rapid software
evolution, the need to obtain and keep relevant certificates to gain the trust of their customers,
the need to prepare for any unwanted incident that may negatively impact their businesses, etc.
For this, they need to prepare internal policies to describe their procedures to handle risk
management. Among these procedures, frequent meetings are usual where they need rapidly
understanding the status of risks in their projects, as well as, to set up priorities to lead to
minimize risks as well as to strengthening their businesses. When these needs are crossed with
IoT they become even more significant. Continuous evolution of technology in the IoT makes
it even more complex to have a long-term risk management plan. Requirements change,
technology changes, and companies need to adopt agile software development processes. With
this, the need for continuous risk management points to which it is probably the only effective
strategy.

The ENACT Risk Management Enabler is facing the challenge to support such organizations.
One of the big gaps that we are planning to fill in this project is the lack of tools that avoid
continuous control of risks. Commercial tools are in general focused on analysing risks at
design time, defining some mitigation actions and approving the risk management plan.
However, companies have little control on the level of implementation of such mitigation
actions or controls and their actual effectiveness. Besides, many companies fill this gap by using
manual procedures based on storing all the information in spreadsheets like Microsoft Excel.
While this approach may be effective in small projects where risks can be still controlled
manually, they rapidly turn inefficient as projects or teams grow. Even if projects are kept
relatively small, duration of projects force for revising risk management plans several times and
strategies based on simple tools or spreadsheets become ineffective.

Our goal is to provide a tool that fills some of these gaps. Figure 3 shows the high-level
description of the envisioned processes. Our enabler supports a company developing software
in the form of a product or SaaS (in the context of ENACT, connected to a trustworthy IoT
system). Each product will have somebody playing the role of the product owner, who will
supervise the whole development of that product. Apart from this role, and in particular for
companies building systems in highly regulated markets, the company will typically have a risk
owner. This role may happen in different forms: it may be a Chief Security Officer, a Risk
analyst, a Data Privacy Officer, etc. In any case, this role may be the owner of the risk
management process and strategy. This role may also take the form of a committee, composed
of different people playing different roles, and bringing different perspectives, including Chief
Product Officers, Chief Technology Officers or Chief Operation Officers. Risk owner will
typically start and contribute and monitor the risk management process. Engineers may also be
involved in this process including developers and operators, to empower a DevOps approach.
Architects and Product Owners will also be involved in the risk management process. An
efficient risk management process will help the organization to understand risk level associated
to detected risks and prioritize the implementation of mitigation actions (or treatments or
controls) in the form of new product features. In the continuous monitoring process, it will be
important to monitor the implementation of the mitigation actions, and if data is available, the
effectiveness of the treatments. Finally, risk management owner(s) needs to report the status of
risk management. Reasons may be multiple, ranging from the willingness of the company to be
compliant with existing standards and regulations to an executive board being interested in

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 13

enforcing a strict control on risks and using this information to improve decision-making
processes.

We assume we are offering a tool for a software company that offers Trustworthy IoT solutions.
This company needs to gain trust most probably because it is dealing with data that may be
crucial about users. Following the TellU use case, this may be health data about the patients at
home who are remotely monitored. Trust is not a matter of security (for instance by proving
compliance with ISO 27001), but it includes many other aspects such as privacy in this case
(especially since May 2018, when GDPR entered into force), or even safety in this and other
scenarios.

Figure 3. High level overview of the tasks around risk management that are relevant in the context of ENACT

There are several standards and certificates that include risk management as an essential aspect
for both security and privacy. While ENACT has a strong focus on security, privacy is also
important and probably less understood. Even when thinking about privacy, there are still two
viewpoints: the security viewpoint and the privacy viewpoint. The security viewpoint focuses
on the protection of the assets that are involved in the protection of personal data, also known
as Personally Identifiable Information (PII) in non-European legal frameworks, while the
privacy viewpoint focuses on the impact to the privacy of data subjects. Figure 4 shows two of
the most significant standards considering privacy from a risk analysis perspective, both from
the security and the privacy viewpoint. Our tool should be able to support security standards
risk management procedures and help our users to show compliance with these standards.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 14

Figure 4. Landscape of current standards facing privacy from different viewpoints and focused on risk management.

 Background tool architecture: MUSA
ENACT’s Risk Management enabler is based on the MUSA Risk Assessment module,
developed in the MUSA project to support the creation of multi-cloud applications by helping
decision makers to make the right decisions. In the context of MUSA, the risk assessment
module fed both the MUSA Cloud Service Selection tool, where selection of services was done
following a risk-based approach, and the MUSA SLA generator2. Figure 5describes the process
flow of the Risk Assessment module.

Figure 5. Outline of Risk Assessment module flow with MUSA framework (Design Time) (Extracted from MUSA D3.3)

The risk management methodology used to build this tool was inspired by CORAS [1] and the
risk-based support system developed in the MODAClouds3 project. In order to assess risks
related to the different components of a multi-cloud application, the MUSA Risk Assessment
module uses a risk model based on STRIDE4, the OWASP5 threat risk modelling, as well as
OCTAVE6. Users choose among the threats in a threat catalogue that were potentially affecting
a particular component of the multi-cloud application, as shown in Figure 5. Besides, the

2 https://www.musa-project.eu/content/service-level-agreement-support
3 http://www.multiclouddevops.com/#MODAClouds
4 https://web.archive.org/web/20070303103639/http://msdn.microsoft.com/msdnmag/issues/06/11/ThreatModeling/default.aspx
5 https://www.owasp.org/index.php/Application_Threat_Modeling
6 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8419

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 15

MUSA Risk Assessment tool allows users to create their own definitions for threats, risks, etc
at every stage of the risk assessment process. Once the threats are selected, they are
automatically classified in the STRIDE categories (Spoofing identity, Tampering, Repudiation,
Information disclosure, Denial of service and Elevation of privilege). Users are required to
provide the likelihood and impact of each threat and the Composite Risk Index (CRI) of each
threat is evaluated:

CRI = Likelihood * Impact

The sub-values influencing CRI are grouped by the type of factors and represented by the value
in a scale of 0-9 where 0 represents a very unlikely scenario and 9 represents a very high
likelihood of the factor to occur. After risk assessment, risks requiring treatment (high and
medium risk level) are identified. In MUSA, a Threat Catalogue was provided establishing a
mapping between that links security controls with risks. Based on this mapping, the required
controls are obtained for the risks selected by users. These controls are then presented to the
user as suggested but the user is free to extend the choice to all the available security controls
if desired. Selected controls are further mapped to the CCM (Cloud Control Matrix) controls
from Cloud Security Alliance (CSA). These controls are later used in the MUSA Framework
for the cloud service selection. Users are finally requested to approve acceptance of the level of
risk mitigation status. Within the MUSA Risk Assessment tool, we leverage ROAM model risk
mitigation classification. ROAM is a common agile management risk mitigation classification
and stand for:

• Resolved - the risk has been answered and avoided or eliminated.
• Owned – the risk has been allocated to someone who has responsibility for doing

something about it.
• Accepted - the risk has been accepted and it has been agreed that nothing will be done

about it.
• Mitigated - action has been taken so the risk has been mitigated, either reducing the

likelihood or reducing the impact.
Note that only threats with status Accepted and Mitigated are considered as fully addressed.
When the status is Owned the risk mitigation analysis must continue. When the status is
Resolved, the corresponding threat is considered no longer relevant.

The MUSA Risk Assessment tool also proposes a new agile risk analysis framework to facilitate
the creation of tools for agile risk management. This framework addresses the four challenges
described above. With this framework, we facilitate translating traditional risk analysis
practices for software development to agile software development contexts, allowing for
continuous risk analysis and enabling stakeholders in agile teams to collaborate. MUSA tool
uses a pull system in the style of Kanban, where the status of each asset with respect to a
predefined risk analysis methodology is expressed through the different columns in the Kanban
board. This makes the tool agnostic to any specific risk analysis methodology.

 Technical presentation and highlights
In this section, we present technical aspects of the ENACT Risk Management enabler. In
particular, we present the Risk Management methodology that we implement in this enabler
and the architecture of the enabler with an initial description.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 16

 Risk Management Methodology
The backbone of any risk management tool is the methodology used for risk management.
While all risk management methodologies presented in the literature and accepted by the
international community through standards, scientific work or other best practices are similar,
they also differ in different aspects. In this subsection, we aim to discuss some of the most well-
known risk management methodologies and adapt them into a proposal that fits ENACT’s
project requirements.

In order to make this exercise, we explored best practices in industry and considered previous
related FP7 and H2020 projects (in particular MODAClouds and MUSA) to come up with a
proposal for ENACT. In particular, we considered the following approaches:

• Risk management methodologies used in MODAClouds and MUSA (and CORAS
methodology implicitly): MODAClouds risk management methodology has a strong
influence from the CORAS methodology [1]. The methodology implemented in these
projects, proposed a simplified version of the CORAS methodology to favour tools
usability. We take this as one of the references and the starting point for ENACT.

• ISO 31000:20187: ISO 31000:2018 provides guidelines on managing risk faced by
organizations. The application of these guidelines can be customized to any
organization and its context. This standard provides a common approach to managing any
type of risk and is not industry or sector specific. Therefore, it can be used throughout the life
of the organization and can be applied to any activity, including decision-making at all levels.
Because of the fact that it is the most generic standard to describe risk management
activities and it is agnostic to a particular context, we take it as a general reference for
ENACT’s Risk Management enabler.

• ISO/IEC 27001:20138: ISO/IEC 27001:2013 specifies the requirements for establishing,
implementing, maintaining and continually improving an information security management
system within the context of the organization. It also includes requirements for the assessment
and treatment of information security risks tailored to the needs of the organization. The
requirements set out in ISO/IEC 27001:2013 are generic and are intended to be applicable to all
organizations, regardless of type, size or nature. As an example, Tellu was recently certified
under this standard, as an essential requirement to sell e-health applications using IoT
infrastructures.

• ISO/IEC 29134:20179: ISO/IEC 29134:2017 gives guidelines for: (i) a process on
privacy impact assessments, and (ii) a structure and content of a PIA report. It is
applicable to all types and sizes of organizations, including public companies, private
companies, government entities and not-for-profit organizations. ISO/IEC 29134:2017
is relevant to those involved in designing or implementing projects, including the parties
operating data processing systems and services that process PII.

As an example of the comparisons performed among existing methodologies for risk
management, in Figure 6, we show a visual summary of the main steps followed by the risk
management methodology in MUSA and the steps suggested in ISO 31000:2018 and in

7 iso.org/standard/65694.html
8 iso.org/standard/62289.html
9 https://www.iso.org/standard/62289.html

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 17

ISO/IEC 29134:2017. While the vocabulary is not identical, the processes are very similar, and
we were able to establish reasonable mappings among all the processes. For instance, in MUSA
assets had to be defined and threats were identified with respect to those assets. We have also
added a step to detect vulnerabilities, following CORAS recommendations, although we
consider this step optional. In ISO 29134, the definition of assets and vulnerabilities is quite
ambiguous, but they put the emphasis in the description of risk sources. Both methodologies or
descriptions define threats (also called unwanted incidents in CORAS) and then risks. In
general, a risk is to be considered an unwanted incident that have been assessed as a risk, i.e.
the likelihood and the impact or consequence have been evaluated. In ISO 20134, the analysis
of impacts is treated separately, but in the rest of standards, this is usually part of the risk
analysis step. Some methodologies talk about treatments, while some other talk about controls.
In general, these are all different terms to refer to mitigation actions.

Figure 6. Outline of Risk Assessment module flow with MUSA framework (Design Time) (Extracted from MUSA D3.3)

Based on this analysis, in Figure 7, we propose a methodology for risk management in ENACT.
In this figure we do not only depict the different steps of our methodology, but we also analyse
the actors playing a central role in each of those steps in a DevOps-driven company.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 18

Figure 7. Risk Management methodology for ENACT’s Risk Management enabler.

Our methodology, inspired by the previous analysis, can be summarize in 6 main steps. We add
a seventh step to emphasize the need for reporting. The 6 steps are:

• Assets definition: most risk methodologies recognize the need to explicitly define our
assets. This is usually an essential part of the methodology as the risks are analysed with
respect the impact they may have on these assets. In ENACT, our assets will be the
components of our IoT system. Instead of allowing the user to define them, which may
be a hard task in a complex and distributed IoT system, we are planning to allow the
tool to consume Genesis Models as described later on in Subsection 3.2.1. However,
there may be other types of assets related to business aspects, such as reputation for
instance. During the execution of ENACT project we will study how to deal with these
aspects. One option would be to mimic what we already did in MUSA, using OWASP
to define the likelihood and consequence. OWASP includes some of the most common
business considerations when evaluating a particular risk. As mentioned before, we have
not included a step to describe the vulnerabilities associated to a particular asset, as we
consider this one an optional step in our methodology. However, ENACT’s tool should
be able to provide the means for an organization to define the vulnerabilities related to
a component of an architecture or a subset of components. Please note that new risks
may arise when combining different types of components in a system and this is hardly
managed with existing technology.

• Threats identification: in this step, users are encouraged to identify threats that may
affect the components in the described system. Detecting vulnerabilities in the previous
step may be also helpful for threat identification. Previous definition of vulnerabilities
may make some threats evident and it also allows for completeness checks at the end,
by checking for vulnerabilities that have not been mapped to the current list of defined
threats.

• Risk Assessment: risk assessment is composed of two different steps: risk analysis,
where risks are evaluated in terms of likelihood and consequence, and risk evaluation,
where risks are accepted, or they are classified as risks that need to be mitigated.

• Definition of Treatments: mitigation actions are defined in the form of treatments. A
treatment can act as a mitigation action of different risks and a risk may require several

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 19

treatments. Deciding what is the minimum number of treatments required to mitigate a
risk may not be straightforward and our tool will support it.

• Residual Risk Assessment: once the mitigation controls are defined, the residual risks
need to be reassessed. This involves again two steps: risk analysis, where likelihood and
consequence are updated after the application of the control(s), and risk re-evaluation,
where risks are analysed again, and they are classified as accepted or further mitigation
actions required.

• Treatment Implementation Control: finally, we add a last step in the methodology
that goes beyond many of the methodologies defined before. In particular, it involves
the control of the implementation of the mitigation actions (or controls) proposed in the
previous step. This step will be connected to the enablers generated in WP4, to collect
evidences from security and privacy monitoring and control in order to match them to treatments
and risks.

We foresee at least the following roles involved in the usage of the ENACT Risk Management
enabler:

• Architect: architect is a key actor in the execution of risk control processes. Architect
will support definition of assets (and in particular, definition of the architecture),
identification of threats, assessment of risks, definition of treatments and assessment of
the residual risk after the application of these treatments.

• Developer: the developer will be involved in the correct implementation of treatments
and their continuous control. They may also be involved in the risk assessment process
and the definition of treatments. Their role in the risk control process may significantly
change depending on the type of organization.

• Risk Management Owner: overall responsible for the risk management process. For
instance, in the case we need to control risks related to privacy, the organization may
need to appoint a DPO, other C-level executives may share their responsibilities (e.g.,
the CEO). Within the risk control process in our tool the Risk Manager Owner will be
responsible for controlling treatment implementation, reporting risk related issues (e.g.,
to the company’s board), or merging the results of risk analysis with the corresponding
authorities, auditors or other members of the company board.

• Product Owner: the product owner, or project manager, usually conducts this process
for a particular product or project of her responsibility. The product owner should be
involved in several phases of the risk analysis process, including: the identification of
sources (e.g., hacker), the definition of assets, the assessment of risks (the first time and
also the reassessment after the application of treatments), the control of treatment
implementation and finally supporting the DPO in preparing documentation related to
a DPIA, in case it is necessary.

• Risk analyst: the risk analyst role represents someone appointed to control the overall
risk assessment process, bringing specific expertise in risk management. While the role
may exist in any type of organization, small companies may not have staff with
particular expertise in risk management and this role may be played by an architect or
an external consultancy firm. In large enterprises, this role may represent a much wider

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 20

subset of roles including staff in the QA department, a CSO or a security expert in
general. Risk analyst will be specially involved in identifying risk sources and threats,
performing the risk assessment, defining treatments and calculating residual risks after
their application.

 Synthesis
In the following, we evaluate how our approach addresses the requirements defined in D1.1 (in
particular, those associated with the Risk Management enabler in D2.1) and the current status
with respect to those requirements. Please note that the text in the description of requirements
in those previous deliverables has been refined after discussions with WP1 and WP2 partner to
iterate over the original requirements to improve clarity. Updated texts have been underlined.

Table 1: WP2 requirements for Risks Management. Underlined text represents text that has been refined with respect to

previous deliverables. 	
ReqID Requirement Description Status at M15
UC2
R1

Risks
Overview

The tool is ought to provide means to express and
analyse all types of risks, including risks on
technical and non-technical assets.

This feature is partially implemented.
Users are free to express any type of
risks and there is a mechanism to
connect related risks.

UC2
R2

Risks Status The tool is ought to provide means to check the
status of the risks and their mitigation at any
given time, that being development or operation
time. Within the DevOps cycle, risks analysis is
believed to be continued so the importance of
understanding the status of risks becomes
critical.

An initial proof of concept has
already been implemented, with a
Kanban-like presentation to show the
status of the risk analysis process and
a mock-up of a dashboard to detect
exceptions related to the risk analysis
process.

UC3
R3

Active cross
actor
collaboration

The tool is ought to enable communication and
collaboration between the actors of risk
management process in order to foster better
understanding of risks and the steps required in
order to fulfil the mitigation strategy.

The first implemented version of the
Kanban-like representation provides
a tool that is collaborative by nature.
The current version allows different
stakeholders to participate in the risk
management process.

UC2
R4

Treatments
implementation
prioritization

The tool is ought to provide evaluation means
which would enable the actors to understand the
impact of mitigation actions on the current
development plan and accommodate it within the
software development process.

The initial pilot developed allows to
specify the type of mitigation actions.
Next step includes adding evaluation
dimensions for each type of treatment
(including for instance cost,
implementation time, etc).

UC2
R5

Mitigation
impact on
operations

The tool is ought to provide mechanism to assess
if a change of the architecture might be necessary
in order to mitigate the risks. This is especially
true in IoT, hybrid highly dynamic environments
where Enact is planning to make the most
impact.

Not implemented yet.

UC3
R6

Personalized,
architecture
crafted
mitigation
actions

The tool is ought to provide suggestions on the
mitigation actions which take into consideration
the type of the architecture against the risks
analysed as well as types of risks which might
occur within whole or subset of the IoT
architecture.

Not implemented yet.

UC3
R7

“Just enough”
level of risks
setting

Since unnecessary mitigation actions may be
introduced during the risk analysis process,
which may be costly, the tool is ought to provide
the necessary means to evaluate the minimum

Not implemented yet.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 21

subset of treatments to consider a specific risk
mitigated.

UC2
R8

Treatment
ineffectiveness
detection

The tool is ought to provide means for detecting
if previously defined mitigation actions are not
effectively mitigating some risks. The current
proof of concept partially implements the
features related to this requirement. It provides a
treatment status dashboard.t

Partially implemented in the current
proof of concept through the
treatment mitigation dashboard.

UC2
R9

Release
schedule
impact

The tool is ought to provide means to evaluate
the impact of the mitigation actions against the
current release planning so that actors can detect
potential clashes of mitigation actions vs
planning.

Not implemented yet.

UC3
R10

Architecture
weak points
detection

The tool is ought to provide means to evaluate
the architectural robustness of the IoT
application by automatically matching risks to
the architecture described. This would enable the
possibility of enhancing the architecture during
the design time without exposing the application
to potential risks which can be addressed
otherwise and become cured.

Not implemented yet.

3 Continuous orchestration and deployment
of SIS

This section presents the orchestration and deployment enabler and is an extended version of
the following two ENACT research papers [2, 3].

Since SIS typically operate in a changing and often unpredictable environment, the ability of
these systems to continuously evolve and adapt to their new environment is decisive to ensure
and increase their trustworthiness, quality, and user experience. In particular, there is an urgent
need for supporting the continuous orchestration and deployment of SIS over IoT, edge, and
cloud infrastructures.

In the past years, multiple tools have emerged to support the building as well as the automated
and continuous deployment of software systems with a specific focus on cloud infrastructures
(e.g., Puppet, Chef, Ansible, Vagrant, Brooklyn, CloudML, etc.). However, as identified in our
literature reviews very little effort has been spent on providing solution tailored for the delivery
and deployment of applications across the whole IoT, edge, and cloud space, especially at IoT
devices level [4-6]. Cloud and edge solutions typically lack languages and abstractions that can
be used to support the orchestration of software services and their deployment on heterogeneous
IoT devices possibly with limited or no direct access to Internet [4-6]. In addition, they typically
do not consider trustworthiness aspects such as security, privacy, resilience, reliability, and
safety.	

To address these challenges, we have developed a framework for the continuous deployment
of SIS. In this section, we present our GeneSIS Framework and show how it facilitates the
development and continuous deployment of SIS, allowing decentralized processing across
heterogeneous IoT, edge, and cloud infrastructures. GeneSIS includes: (i) a domain-specific

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 22

modelling language to model the orchestration and deployment of SIS; and (ii) an execution
engine that supports the orchestration of IoT, edge, and cloud applications as well as their
automatic monitoring and deployment across IoT, edge, and cloud infrastructure resources.

The main contributions of GeneSIS that we present in this section are the following:

• It enables to cope with the heterogeneity across the IoT, edge, and cloud infrastructures
and control the orchestration and continuous deployment of SIS that span across this
space. A special focus has been to tackle challenges imposed by IoT infrastructures that
typically include devices with no or limited access to Internet.

• The same language and tool are used for the continuous deployment of SIS (including
the monitoring of the deployed system - i.e., monitoring if hosts are still reachable and
if software component are still running, and the dynamic adaptation of a deployment -
i.e., modifying how a SIS is deployed) providing a unique model-based representation
of the SIS for both design- and run-time activities (i.e., for developers and operators).

• It enables to cope with security and privacy concerns of SIS as it natively offers support
for including, as part of the deployment models, concepts to express security and
privacy requirements and for the automatic deployment of the associated mechanisms.

In the remainder of the section, subsection 3.1 describes the overall approach of the GeneSIS
Framework. Subsection 3.2.1 presents the GeneSIS Modelling language while Subsection 3.2.2
details the supporting execution engine. Subsection 3.2.3 details how we extended ThingML
for monitoring the execution flow of ThingML programs and how this is integrated in GeneSIS.
Then, Subsection 3.3 shows the integration of the GeneSIS framework with existing IoT
platforms, e.g., FIWARE or SMOOL. Finally, Subsection 3.4 evaluates how our approach
addresses the requirements defined in 3.1.1 and the current status with respect to the use case
requirements as defined in D2.1.

 Overall presentation of the enabler
In this section we first introduce a motivating example evolved from the smart building case
study provided by Tecnalia to highlight in a single scenario the main requirements for GeneSIS.
Then we present the overall GeneSIS approach.

 Motivating example
The example is about a smart building that needs support for continuous deployment of its SIS
together with security and privacy mechanisms. The smart building has several IoT gateways
that control IoT field devices inside and outside the building. Figure 8 shows two representative
IoT gateways: gateway1 (RaspberryPi1) that receives sensors' data (i.e., temperature, fire, light)
and camera data, and gateway2 (Rpi2) that sends commands to control the actuators, e.g.,
heating, window blinds, LED-lights. For simplicity, we only discuss here a representative part
of the smart building, which is about an IoT Energy Efficiency application that gets access to
sensors' data to make decisions and send commands to control the actuators.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 23

Figure 8. An example of a GeneSIS deployment model of a smart building application

Gateway1 hosts two main applications Aggregator and DisplayCtrl and a security gateway. The
Aggregator reads data from the light sensor and also connects to the HD camera. Devices are
either directly connected to Gateway1 such as the camera, or indirectly connected via serial
communication from an Arduino controlling the light sensor. Gateway1 shares sensor data with
the IoT Energy Efficiency application and stores it in the FIWARE Orion Broker hosted in the
Cloud. The IoT Energy Efficiency application uses the sensors data to make decisions and sends
commands to control the actuators. In particular, it maximizes the exploitation of daylights and
regulates the in-door temperature whilst minimizing the energy consumption. If the room is
bright because of daylight, it will switch off the LED-lights, and vice versa, it will turn on the
LED-lights and/or open the blind if it becomes too dark. The application will also switch off
the light if there is no person in the room after a certain time, e.g., based on the video analysis
application. On the other hand, if the room temperature is high, the IoT Energy Efficiency app
may need to close the window blinds to prevent sunlight heating the room. Therefore, the
actuator to control the blinds can be accessed concurrently (e.g., the blind is used to control
both the temperature and the light level) for different behaviours, which have conflicting goals
and effects (i.e., actions optimizing temperature may be hindered by actions optimizing light
level). A device controller (i.e., components whose role is to manage access to actuators) is
added to the SIS to handle this problem.

The main requirement for GeneSIS deployment model regarding the support for specifying
security and privacy is the following. There is a software component that requires to be
deployed together with a specific security component providing a certain security and privacy
capability. For example, the IoT Energy Efficiency application that reads sensor data must only
do so according to an access control policy, or context-based access control mechanisms. It is
important to note that the IoT applications can only receive sensors’ data that they are allowed

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 24

to access and can only send commands to the actuators that they are allowed to control, in a
dynamic context. For example, for security (and privacy) reasons, the IoT Energy Efficiency
application can receive sensors data about temperature and light, but not live video from
cameras. The IoT Energy Efficiency application can control heating system or window blinds,
but NOT in case of fire alarm. For privacy reasons, camera data cannot be sent out of the
Gateway1. The main requirement for GeneSIS is that when deploying the IoT applications, we
also need to deploy security and privacy mechanisms together with the policies that must be
enforced for those IoT applications.

More advanced requirements may be also needed such as the constraints of the deployed
security and privacy controls. Constraints for deploying security modules must be considered
by GeneSIS such as how far the host of a security module is from the sensors or actuators. For
example, the security module may need to execute on a local node to the Gateway1 to ensure
the performance of the authentication mechanism.

This example motivates for the following requirements that are addressed by GeneSIS:

• Separation of concerns and reusability (R1): A modular, loosely-coupled
specification of the data flow and its deployment is required so that the modules can be
seamlessly substituted and reused. Elements or tasks should be reusable across
scenarios.

• Abstraction and Infrastructure independence (R2): It is a need to be able to specify
the orchestration and deployment of SIS over IoT, edge, and cloud infrastructures in
both a device- and platform-independent and -specific way (GeneSIS enables this
through a domain-specific language). In addition, a continuously up-to-date, abstract
representation of the running system is required to facilitate the reasoning, simulation,
and validation of operation activities.

• White- and black-box infrastructure (R3): Support for white- and black-box devices
is required to cope with various degrees of delegation of control over underlying
infrastructures and platforms.

• Automation and adaptation (R4): A fully automated deployment of SIS over IoT,
edge, and cloud resources is required. This includes supporting the deployment of
software components on devices with limited access to Internet. In addition, the
deployment of a system should be dynamically adaptable with minimal impact over the
running system (i.e., only the necessary part of the system should be adapted). The
deployment and adaptation API exposed to the users should be technology agnostic and,
as much as possible, device- and platform-independent.

• Security and privacy (R5): Supporting the specification of the security and privacy
mechanisms that should be involved in the SIS (including their orchestration and how
they can be deployed) is required.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 25

• Safety (R6): The identification and management of actuation conflicts should be
facilitated, in particular, to ensure authorisation policies in actuation.

Abstraction and infrastructure independence (R2) and automation (R4) are justified by the need
for deploying the system on an infrastructure leveraging the IoT (i.e., Arduino board), edge
(i.e., Raspberry PI), and cloud (i.e., Amazon EC2) spaces. Separation of concerns (R1),
automation and adaptation (R4), and actuation conflicts (R6) are justified by the need for
dynamically adding a new software component to manage the access to the blinds with minimal
impact on the already running system. The support for white- and black-box infrastructure (R3)
is justified by the need to use, in the same system, a black-box device (i.e., the RFXtrx433E
transceiver) and white-box devices (e.g., Raspberry PI). Finally, the support for security and
privacy mechanisms (R5) is justified by the involvement in the system of actuators whose
access should be controlled, and private data must be protected.

In the following sections, we present GeneSIS and how it addresses these requirements.

 Overall approach
The objective of GeneSIS is to support the orchestration and deployment of IoT systems whose
software components can be deployed over IoT, edge, and cloud infrastructures. The target
user group for our framework is thus mainly software developers and architects. Figure 9
depicts the overall GeneSIS approach.

Figure 9. An overview of the GeneSIS approach

To deploy an application on the selected target environment, its components need to be
allocated on host services and infrastructure. More precisely, what needs to be allocated are the
implementations of those components. This is often referred as deployable artefact. Examples
of deployable artefacts are binaries, scripts, etc. A deployable artefact can be physically
allocated independently to multiple hosts (e.g., a Jar file can be uploaded and executed on

Deployable
artefacts

GeneSIS
Continuous
deployment

Running
system

c1

c2
c3

c1
c1

Arduino
Uno

Virtual Machine
(RAM=8GB,
CPU=2GHz)

RPI
(RAM=64MB,
CPU=400MHz)

ThingML Code
Can be dynamically

deployed
and migrated on

heterogeneous targets

Node-RED container
Can be dynamically

adapted

Black-box
software
artefact

(e.g., binaries)

.exe

c1

c3

c1
c1

c2

Deployment and monitoring

references between logical deployment components and their implementations

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 26

different Java runtime) [6]. As depicted in the top layer of Figure 9, at the current moment,
GeneSIS consumes as input three types of deployable artefacts:

• Blackbox deployable artefact: This refers to deployable artefacts that cannot be
modified by GeneSIS (e.g., GeneSIS can deploy a binary but cannot modify it). Our
framework is agnostic to any development paradigm and technology, meaning that the
developers can design and implement their blackbox deployable artefact based on their
preferred paradigms and technologies. GeneSIS is also agnostic to any specific business
domain.

• ThingML source code: ThingML [7, 8] is a domain specific language for modelling
distributed IoT systems including the behaviour of the distributed components in a
platform-specific or -independent way. From a ThingML code, the ThingML compiler
can generate code in different languages, targeting around 10 different target platforms
(ranging from tiny 8-bit microcontrollers to servers). This is particularly interesting for
GeneSIS as, from a deployment model, the GeneSIS execution engine can identify the
host to which a ThingML source code should be allocated and thus generate code in the
relevant language before compiling and deploying it on the host. This also provides
GeneSIS with the ability to seamlessly migrate or deploy a ThingML program
from one host to another.

• Node-RED container: Using Node-RED, one can build an application as assembly of
components executed in a Node-RED container, which can be dynamically adapted.
This provides GeneSIS with the ability to dynamically tailor an application to best
fit its deployment.

Where and how these deployable artefacts are allocated is specified in a deployment model.
Deployment approaches typically rely on the logical concept of software artefacts or
components [9]. A deployment model is thus a connected graph that describes software
components along with targets and relationships between them from a structural perspective
[10]. A deployment configuration or deployment model typically includes the description of
how its software components are integrated and communicate with each other. This is often
referred to as software composition or orchestration. Software components represent either the
deployable artefact and/or the resources on top of which of them are deployed.

GeneSIS includes: (i) a domain-specific modelling language to specify deployment model –
i.e., the orchestration and deployment of SIS across the IoT, edge, and cloud spaces; and (ii) an
execution engine to enact the actual orchestration and deployment of SIS.

Because it is not always possible for the GeneSIS execution engine to directly deploy software
on all hosts (e.g., tiny devices do not always have direct access to Internet or even the necessary
facilities for remote access), the actual action of deploying the software on the device has to be
delegated to a host (e.g., a gateway) locally connected to the device. The GeneSIS execution
environment handles this problem by (i) generating a deployment agent responsible for
deploying the software on the device with limited connectivity and (ii) deploying it on the host
locally connected to the device with limited connectivity.

Finally, the GeneSIS execution environment is also responsible for monitoring the deployment
and the status of the deployed SIS. It is worth noting that the information monitored from a

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 27

running system are fed back into its GeneSIS deployment model, providing a unique model-
based representation for both design- and run-time activities.

 Technical presentation and highlights
In this section we present the GeneSIS Modelling language before we detail its supporting
execution engine. Compared to D2.1, the main evolution in the GeneSIS modelling language
consisted in extending the language with new concepts to support the modelling and
deployment of security and privacy mechanisms. In particular, and as detailed in Section 3.2.1,
we added the concepts of port and capabilities. These provide the ability to specify, for each
component, the capabilities (in term of security and privacy, execution support, hardware) it
offers and demands. A deployment model is valid when all demands match offers. As detailed
in Section 3.2.2, the main evolutions of the GeneSIS execution engine are: (i) support for the
concept of ports and capabilities, (ii) extension of ThingML with monitoring and debugging
mechanisms and its deep integration with GeneSIS, (iii) development of the GeneSIS
deployment agent.

 The GeneSIS Modelling Language
One of the objectives when we developed the GeneSIS modelling language was to keep it with
minimal set of concepts, but still easily extensible. Our language is inspired by component-
based approaches in order to facilitate separation of concerns and reusability (addressing R1).
In this respect, deployment models can be regarded as assemblies of components. The type part
of the GeneSIS modelling language metamodel is depicted in Figure 10.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 28

Figure 10. Metamodel of the GeneSIS modelling language

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 29

In the following, we provide a description of the most important classes and corresponding
properties in the GeneSIS metamodel as well as sample models in the associated textual syntax.
The textual syntax better illustrates the various concepts and properties that can be involved in
a deployment model and that can be hidden in the graphical syntax.

A Deployment Model consists of SISElements. All SISElements have a name and a unique
identifier. In addition, they can all be associated with a list of properties in the form of key-
value pairs. The two main types of SISElements are Components and Links.

A Component represents a reusable type of node that will compose a Deployment-Model. A
Component can be a SoftwareComponent representing a piece of software to be deployed on a
host (e.g., an Arduino sketch can be deployed on an Arduino board). A SoftwareComponent
can be an InternalComponent meaning that it is managed by GeneSIS (e.g., an instance of
Node-RED to be deployed on a Raspberry Pi), or an ExternalComponent meaning that it is
either managed by an external provider (e.g., a database offered as a service) or hosted on a
blackbox device (e.g., RFXCom transceiver) (addressing R3). A SoftwareComponent can be
associated with Resources (e.g., scripts, configuration files) adopted to manage its deployment
life-cycle (i.e., download, configure, install, start, and stop). In particular, there are three main
predefined types of resources: Docker-Resource (see Listing 1), SSH-Resources, and
AnsibleResources.

Listing 1. An example of Internal component

{
"_type": "/internal",
"name": "Orion",
"properties": [],
"id": "bf1c8d43-b19e-49c7-969d-26b34e73e2e9",
"provided_execution_port": [],
"docker_resource": {
"name": "f3e3feba-056e-46a7-9225-5b9edf5f1820",
"image": "fiware/orion:2.2.0",
"command": "-dbhost mongodb",
"links": ["mongodb:mongodb"],
"port_bindings": {
 1026": "1026"
},
"devices": {

 "PathOnHost": "",
 "PathInContainer": "",
 "CgroupPermissions": "rwm"

},
"required_execution_port": {

 "name": "needDocker",
 "needDeployer": false

},
"provided_communication_port": [{

 "name": "OrionNGSIv2 API",
 "port_number": "1026"

}]

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 30

"required_communication_port": [{
 "name": "requiresMongo",
 "port_number": "27017",
 "isMandatory": true

}]
}

An InfrastructureComponent provides hosting facilities (i.e., it provides an execution
environment) to SoftwareComponents. The properties IP and port represent the IP address and
port that can be used to reach the InfrastructureComponent (see Listing 2). The property
needDeployer depicts that a local connection is required to deploy a SoftwareComponent on an
InfrastructureComponent via a Physical-Port (e.g., the Arduino board can only be accessed
locally via serial port, see Listing 2). An InfrastructureComponent can expose a set of
hardwareCapabilities, which represent the interfaces toward specific hardware facilities
attached to the component (e.g., a light sensor is plugged to the Arduino). This is important as
(i) the software component that will use the hardware facility must know how to access it and
(ii) in case a software component is using a specific interface for accessing a hardware facility,
we must ensure that the required interfaces match what is offered by the
InfrastructureComponent.

Listing 2. An example of Infrastructure component

{
"_type": "/infra/device",
"name": "ardui",
"properties": [],
"id": "dd3f5ac5-7723-449b-a57e-8c5d1d62252d",
"provided_execution_port": [{

 "name": "arduino"
}],
"ip": "127.0.0.1",
"port": [],
physical_port": "/dev/ttyACM0",
device_type": "arduino",
"needDeployer": true

}

Components are connected through two kinds of ports. A communication port represents a
communication interface of a component. A ProvidedCommunicationPort provides a feature
to another component (e.g., FIWARE Orion provides a REST interface, see Listing 3), while a
RequiredCommunicationPort consumes a feature from another component (e.g., FIWARE
requires a MongoDB interface, see Listing 3). Only internal components can have a
RequiredCommunicationPort since they are managed by GeneSIS. The property isMandatory
of RequiredCommunicationPort represents that the InternalComponent depends on this feature
(e.g., the service hosted on RaspberryPi2 will not work if the communication with RFXtrx433E
is not properly set up). The property portNumber represents the logical port that can be used to
interact with the component.

An execution port represents the execution interface of a component (i.e., the execution
environment offered by the component for other components). A ProvidedExecutionPort

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 31

represents that the component provides execution environment facilities (e.g., an Arduino board
provides an execution environment for Arduino Sketches, see Listing 2), while a
RequiredExecutionPort represents that the internal component requires an execution
environment from another component (e.g., FIWARE Orion requires hosting from a Docker
engine, see Listing 3). A RequiredExecutionPort may require securityCapabilities (i.e., a set of
security mechanisms are required) (addressing R5), executionCapabilities (i.e., a specific
execution environment is required for the component to execute), and hardwareCapabilities
(i.e., some hardware facilities must be available at a certain location). By contrast, a
ProvidedExecutionPort may offer securityCapabilities and executionCapabilities. For a
deployment model to be valid, all the required capabilities must match a provided capability.

There are two main types of Links. A Hosting depicts that an InternalComponent will execute
on a specific host. This host can be any Component, meaning that it is possible to describe the
whole software stack required to run an InternalComponent. A Hosting can be associated with
Resources specifying how to configure the components so that the contained component can be
deployed on the container component. A Communication represents a communication binding
between two SoftwareComponents. A Communication can be associated with Resources
specifying how to configure the components so that they can communicate with each other. The
property isController indicates that the SoftwareComponent associated to the in attribute is
controlled by the other (e.g., all messages going to the Arduino should pass through the service
hosted on RaspberryPi, see Listing 3) (addressing R6). Finally, the property isDeployer
specifies that the InternalComponent hosted on the InfrastructureComponent with the
needDeployer property should be deployed from the host of the other SoftwareComponent (e.g.,
the artefact to be executed on the Arduino will be deployed from the RaspberryPi). This
property is important as several host may have a local access to the host with limited Internet
access but only one should run the deployment agent. The property isLocal indicates that the
source and target of the communication have to be deployed on the same host.

Listing 3. An example of Communication

{
"name": " ctrlRFXtrx433E_Transceiver",
"properties": [],
"src": /IoT_Energy_Efficiency/64d0fff3-a8fc-408d-8370-9cbc28ce9d23",
"target": "/RFXtrx433E_Transceiver/f7eb6490-b91a-475a-be9d-d6671d26f426",
"isControl": true,
"isDeployer": false,

 “isLocal”: false
}

It is worth noting that we applied the type-instance pattern [11] to SoftwareComponents thus
facilitating the definition and reuse of generic types of components (addressing R1). As a result,
components can remain device- and platform-independent or specialized into device- or
platform-specific components (addressing R2).

 The GeneSIS execution engine
From a deployment model specified using the GeneSIS Modelling language, the GeneSIS
deployment execution engine is responsible for: (i) deploying the SoftwareComponents, (ii)

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 32

ensuring communication between them, (iii) provisioning cloud resources, and (iv) monitoring
the status of the deployment.

3.2.2.1 Overall architecture
As depicted in Figure 11, the GeneSIS execution engine can be divided into two main elements:
(i) the facade and (ii) the deployment engine.

Figure 11. Models@Run-time architecture of GeneSIS

The facade provides a common way to programmatically interact with the GeneSIS execution
engine via a set of three APIs. The monitoring API offers mechanisms for remote third parties
(e.g., reasoning engines) to observe the status of a system. Third parties can either consume the
whole GeneSIS model of the running system enriched with runtime information or subscribe to
a notification mechanism.
The high-level commands API exposes a pre-defined set of high-level commands that avoid
direct manipulation of the models (i.e., the model is automatically updated when the command
is triggered).
At the current moment, this API only includes a migrate command that supports the migration
of an InternalComponent from one host to another. Finally, the model manipulation API
provides the ability to load a new target deployment model. In the future, it is also planned to
provide support for the atomic MOF-level modifications of the deployment model.

GeneSIS follows a declarative deployment approach. From the specification of the desired
system state, which captures the needed system topology, the deployment engine computes how
to reach this state (Addressing R4). At the current moment, the deployment engine only
computes a single adaptation plan, which may not always be optimal (i.e., not necessarily the
fastest deployment of the one using lowest amount of bandwidth). In future work we will
consider leveraging former work [12] to address this issue.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 33

The GeneSIS deployment engine implements the Models@Run-time pattern to support the
dynamic adaptation of a deployment with minimal impact on the running system.
Models@Run-time [13] is an architectural pattern for dynamic adaptive systems that leverage
models as executable artefacts that can be applied to support the execution of the system.
Models@Run-time enables to provide abstract representations of the underlying running
system, which facilitates reasoning, analysis, simulation, and adaptation. A change in the
running system is automatically reflected in the model of the current system. Similarly, a
modification to this model is enacted on the running system on demand. This causal connection
enables the continuous evolution of the system with no strict boundaries between design- and
run-time activities (addressing R2).

Our engine is a typical implementation of the Models@Run-time pattern. When a target model
is fed to the deployment engine, it is compared (see Diff in Figure 11) with the GeneSIS model
representing the running system. Finally, the adaptation engine enacts the adaptation (i.e., the
deployment) by modifying only the parts of the system necessary to account for the difference
and the target GeneSIS model becomes the current GeneSIS model.

Finally, the deployment engine can delegate part of its activities to deployment agents running
on the field (see Section 3.2.2.2 for more details).

A deployment process typically consists in the following steps.

1. Check infrastructure: This step consists in checking if the hosts specified in the
deployment model are reachable (e.g., is the docker remote API accessible at the address
specified in the deployment model). For cloud resources, the objective is to check if the
API offered by the cloud provider can be accessed.

2. Provision and instantiate resource: In the case of cloud solutions, this step consists in
provisioning the cloud resources based on few constraints (e.g., min CPU, min Disk,
min RAM) and running the proper execution environment (i.e., virtual machine image)
as specified in the deployment model. For container technologies, this step consists in
pulling the image of the container and running it with the set up specified in the
deployment model (e.g., access to file system, specifying open ports).

3. Installation and configuration: This step consists in running scripts and commands to
configure and install software on the host. This includes ensuring that the software
components that form the deployment topology can communicate with each other.

4. Start: this step consists in starting the deployed software.

In the following subsections, we detail the specific deployment support that is offered for two
InternalComponents natively supported by GeneSIS: the Node-RED and ThingML
components, namely. These are the deployable artefacts presented in Section 3.1.2, for which
classical deployment approaches do not offer specific support. Yet, these nodes are represented
as regular InternalComponent and GeneSIS is not bound to any of them (i.e., GeneSIS can be
used without these nodes).

Node-RED Components -- dynamic adaptation of the application behaviour
Node-RED [14], an open source project by IBM, uses a dataflow programming model for
building IoT applications and services.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 34

Provided with a visual tool, Node-RED facilitates the tasks of orchestrating IoT devices, wiring
them up to form an IoT application. More precisely, a Node-RED application takes the form of
one or more flows, which are composed of a set of nodes and wires. A node is a piece of software
written in JavaScript that typically executes when a message is received from a wire. Node-
RED can run at the edge of the network because of its light footprint. Thanks to the large
community behind Node-RED, a large set of Node-RED nodes are available off-the-shelf
making it easy to implement new applications.

The Node-RED Admin API can be used to remotely administer an instance of Node-RED10. In
particular, it enables the dynamic loading of a flow or the dynamic modification of the running
flow. Node-RED also implements the Models@Run-time pattern, it is thus possible to add or
remove nodes without modifying the rest of the flow.

When deploying a Node-RED InternalComponent, GeneSIS leverages the Node-RED Admin
API in order to dynamically instantiate the necessary nodes within a flow to ensure the
communications with the rest of the components in the GeneSIS model. For instance, in the
context of our motivating example, the service responsible for managing the accesses to the
Arduino is implemented using Node-RED. Its deployment proceeds as follows. An instance of
the Node-RED runtime is deployed and started using Docker. Once started, GeneSIS
automatically instantiates and configures: (i) a “serial port communication” node to
communicate with the Arduino board and (ii) “web socket out” (see Figure 8)

ThingML Components -- deployment across heterogeneous platforms
ThingML is an open source IoT framework that includes a language and a set of generators to
support the modelling of system behaviours and their automatic derivation across
heterogeneous and distributed devices at the IoT and edge end. The ThingML code generation
framework has been used to generate code in different languages, targeting around 10 different
target platforms (ranging from tiny 8 bit microcontrollers to servers) and 10 different
communication protocols [15]. ThingML models can be platform specific, meaning that they
can only be used to generate code for a specific platform (for instance to exploit some
specificities of the platform); or they can be platform independent, meaning that they can be
used to generate code in different languages.

The deployment of a ThingML InternalComponent by GeneSIS, not only consists in the
deployment of the code generated by ThingML on a specific platform, but also in the actual
generation of this code. The GeneSIS deployment engine proceeds as follows. It first identifies
the platform on which the ThingML InternalComponent should be deployed. Then it consumes
the ThingML models attached to the component and use ThingML to generate the code for the
identified platform. If required, the generated code is further built and packaged before being
deployed. Thanks to this mechanism, a ThingML InternalComponent can easily be migrated
from one host to another. In other words, this means that the same ThingML code can be
dynamically migrated from one device and platform to another without necessarily relying on
a virtualization technology for lower footprint.

10 https://nodered.org/docs/api/admin/methods/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 35

3.2.2.2 The GeneSIS Deployment Agent
It is not always possible for the GeneSIS execution engine to directly deploy software on all
hosts. Indeed, tiny devices, for instance, do not always have direct access to Internet or even
the necessary facilities for remote access (in such case, the access to Internet is typically granted
via a gateway) and for specific reasons (e.g., security) the deployment of software components
can only be performed via a local connection (e.g., a physical connection via a serial port). In
such case, the actual action of deploying the software on the device must be delegated to the
gateway locally connected to the device. Within our example, this is the case of the Arduino
device whose software code can only be updated via the RaspberryPi gateway.

The GeneSIS deployment agent aims at addressing this issue (addressing R4). It is implemented
as a Node-RED application. We decomposed the deployment procedure into four steps resulting
in four groups of Node-RED nodes (see Figure 12). The flow of components (a.k.a. nodes) that
will form the deployment agent is dynamically generated and deployed by the GeneSIS
deployment engine based on the target host. It is worth noting that only the deployment node is
mandatory and needs to be in the agent. Indeed, compilation and communications are activities
that could be run anywhere on the IoT, edge, and cloud space. In addition, the other components
can be distributed across different instances of Node-RED. We present below these four groups
of components.

Figure 12. The deployment agent nodes

Code generation nodes: The aim of this type of node is to generate, from source code or
specification languages, the code or artefact to be deployed on a target device. In the context of
our motivating example, we created a ThingML compilation node, which consumes ThingML
models and generates code in a specific language. The desired language is specified as a
property of the node (e.g., Arduino sketch in our example). The code generation is achieved by

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 36

using the ThingML compiler. In order to trigger a compilation, code generation nodes consume
as input a start compilation message. Once the compilation is successfully completed, they
should send a generation success message that includes the location of the generated code.
Finally, a compile on start property can be set to true enabling to trigger the compilation when
the node is instantiated. By contrast, the deletion of an instance of the node results in the deletion
of the generated code.

Deployment configuration nodes: This type of node aims at preparing the actual deployment
of a software component (being generated by 1. or not). This typically consists in generating
configuration files. For instance, we created a ThingML Docker deployment configuration node
that generates a "docker-compose" file as well as the relevant Dockerfile files depending on the
target device. These nodes typically consume messages from the code generation nodes – i.e.,
generation success messages that include details about the location of the artefact to be
deployed. The retrieval of such a message triggers the actual generation of the configuration
file. Once this process is completed, it generates a message containing the location of both the
artefact to deploy and the configuration files. Removing an instance of configuration nodes
results in the deletion of all the configuration files it has generated.

Deployment nodes: This type of node aims at enacting the deployment of a software
component on a specific target. In the context of our motivating example, we created an
Arduino deployment node that (i) build and upload an Arduino sketch on the Arduino board
using the Arduino CLI11 and (ii) install the libraries required for its proper execution. Similarly,
we created a Docker deployment node. These nodes typically consume messages from the
configuration nodes and do not produce any output. Removing an instance of a deployment
node results in the termination of the deployed software (e.g., killing a docker container,
deploying a dummy Arduino sketch).

Communication nodes: After deployment, it can be important to communicate with the
deployed software artefacts, for instance to monitor the status of a deployment.
Communications nodes are regular Node-RED I/O nodes such as serial port for Arduino board
or HTTP requests for REST services.

Thanks to this modularity, components from each of these groups can be seamlessly and
dynamically composed for different types of deployments. The following scenario illustrates
the benefits of such modularity. Considering our motivating example, in case of failure of the
Arduino board, the InternalComponent named DisplayMessage could be temporarily migrated
from the Arduino to the RaspberryPi by dynamically recompiling the ThingML code to Java
and redeploying it on the RaspberryPi.

The development and operation of applications deployed by an agent and running on IoT
devices such as Arduino boards is typically challenging as it is not always possible to access
the logs or the systems output. To address this issue, we extended ThingML and the deployment
of ThingML programs via GeneSIS with the necessary mechanisms to enable the remote
debugging of ThingML programs as well as the run-time monitoring of its execution flow.

11 https://playground.arduino.cc/Learning/CommandLine

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 37

 Model-based, Platform-independent Logging of the deployed
SIS

A typical application of Model-Driven Software Engineering [16] [17] (MDSE) is to provide
abstraction on top of heterogeneous targets with the aim to facilitate the design, development,
and operation of complex systems. With this objective in mind, a set of approaches propose to
improve productivity by automatically generating code in different target languages from a
common abstraction [18] [15]. However, one recurring challenge in those approaches is how to
properly log, monitor and debug the generated programs (hereafter called target programs).
Indeed, to fully benefit from the approach, such logging should be performed in a uniform way
that relates to the concepts of the original abstraction level.

A number of mature tools for logging, monitoring and debugging already exist for most
programming languages, and provided that fully operational code can be generated, those tools
can be used as-is to generate insight about each individual target programs. However, in the
cases where there is no direct 1-to-1 mapping between the original abstraction and each target
language i.e., if an original concept needs to be decomposed and recombined into lower-level
constructs, those platform-specific tools will typically fail relating to the original concepts. As
a result, the management of these tools may become overwhelming.

ThingML is a domain specific language for modelling the behaviour of distributed systems.
From a ThingML specification, compilers can generate fully operational code for different
languages, targeting around 10 different target platforms. ThingML is asynchronous by nature,
and the main pattern to implement the behaviour of a program is composite statecharts à la
UML. None of the target languages provide language-level support for statecharts, and while
JavaScript and Go are asynchronous by nature, through the JavaScript event loop and Go
routines, C and Java are mostly synchronous, with asynchronous mechanisms only available
via libraries. This hinders the use of mature tools for logging ThingML generated programs, as
discussed before. Instead, one way of logging the execution of programs generated from
ThingML would be to extend the existing code generators, so as they automatically weave-in
the extra instrumentation that is needed to bridge this abstraction gap. While this approach is
fully possible, it comes at a hefty price:

• All the code generators need to be updated, which is a non-trivial task. Given that each
generator is already a rather complex piece of software, great care, not to say extreme
reluctance, is often the rule applied by developers and maintainers of code generators
when it comes to extensions going beyond the sole objective of generating code for the
existing concepts of the modelling language.

• This implies that a solid test suite needs to be implemented to ensure that logs are
consistent across all the supported languages.

• To reduce the implementation effort, one can directly link to specific logging
frameworks, so as to avoid maintaining a generic and extensible framework. While this
might be an acceptable option for developers willing to use the selection solution, this
forces the others to modify the compilers if they want to use another solution.

Rather, we propose a radically different approach, where existing compilers are left totally
unchanged. This approach relies on (i) a platform-independent framework for logging,
modelled existing ThingML concepts, (ii) a set of annotations to control which aspects of a

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 38

ThingML model should be logged, (iii) a set of endogenous ThingML-to-ThingML model
transformations, automatically introducing the necessary instrumentation that integrates with
the logging framework, and (iv) a set of interchangeable platform-specific drivers to transport
the logs into different back-ends. Our empirical assessment on three different target languages
indicated that this logging approach implies, in most cases, a reasonable overhead at runtime:
+1-3% on execution time for Java and Go (however, +18% in JavaScript) and +7-9% on RAM.

Section 3.2.3.1 gives an overview of our platform-independent logging approach for
heterogeneous target, while Section 3.2.3.2 details the model transformations involved in the
automatic weaving of the logging instrumentation. Section 3.2.3.3.1 and Section 4.2.3.3.2
evaluate our approach, respectively from a quantitative and qualitative points of view.

3.2.3.1 Overall approach
Our main objective is to provide an automated, platform-independent and easy to use logging
mechanism to ThingML developers. This logging approach aims at providing log information
about the execution of their ThingML programs, in terms of ThingML concepts being executed.
This approach does not intend to provide detailed information about the underlying execution
of the target programs, i.e., lower-level code generated by ThingML. Existing platform-specific
debuggers and profilers can be used for this.

ThingML [19][15] is a textual modelling language for heterogeneous and distributed reactive
systems. It is fundamentally built around a sub-set of the UML: statecharts and components
communicating through asynchronous message-passing. In addition, the ThingML language
comes with a first-class, platform-independent action language, providing a classical set of
actions and expressions found in most imperative languages i.e., variables, functions and
function calls, numerical and Boolean algebra, control structure (if, while, for-loop) and so on,
as well as two more specific statements: (i) to send asynchronous messages (the reception of
messages being handled in the statechart), and (ii) to mix ThingML statements with code from
the target language (typically to implement drivers or wrap existing libraries). ThingML models
can automatically be compiled to Java, Go and different dialects of C and JavaScript.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 39

Figure 13. Overview of our model-driven, platform-independent logging approach.

Figure 13 gives an overview of our approach. The main input to our approach, depicted on the
left hand-side of the figure, is a “plain-old ThingML model” i.e., a ThingML model that
developers can specify with the current and un-modified ThingML tools. This model can be
annotated with @monitor annotations, using ThingML's default annotation mechanism, which
are used to specify what the developer wants to log. Based on these annotations, the input
ThingML model will be transformed into an instrumented ThingML model, which extends a
generic and reusable logging framework, depicted at the top of the figure. This instrumented
model contains additional code that is woven into the original model to interact with the logging
framework and log information as described in the annotations. This instrumented model
(basically containing a number of component types) can then be further refined into an
operational instrumented model, where a concrete back-end for the logging will be instantiated,
which will be responsible for the actual storage and handling of the log events, for example
locally or on a remote server. This operational model can then be “compiled” to one of the
languages supported by ThingML, with no need to modify those existing compilers12. When
executed, the generated code will emit log events as specified in the original model with logging
annotations. Those events are self-descriptive, containing all the information needed to
understand the execution of the program, in terms of ThingML concepts. In other words, the
target programs executing at the M0 level will generate traces directly referring to concepts
available at the M1 level.

3.2.3.2 Logging as a set of model transformations
Our logging approach is built around:

• a generic logging framework, which provides an abstract, platform-independent logging
API, described in sub-Section 4.2.3.2.1,

12 strictly speaking the ThingML ``compilers'' are model-to-text transformations producing source code for the supported target languages.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 40

• a set of model transformations, responsible for weaving the required logging
instrumentation and to interact with this framework, described in the remaining sub-
sections.

The model transformations create, update and delete ThingML elements, which we will
illustrate on simple examples, using a rather standard “diff”' syntax: [+] for showing
additions/updates and [-] for showing deletions.

ThingML Logging Framework
Our logging approach allows logging five key information of any ThingML program, as
specified in the API shown in Figure 14:

• Function calls, where the function name, its optional return type, its optional return
value and its optional list of actual parameters are recorded.

• Property updates, where the property name, its type, its previous and new values are
recorded.

• Events where all incoming and outgoing events are recorded. More precisely:
o events emitted by a component, where the name of the message, the port on

which it is sent, and its optional list of actual parameters are recorded,

o events received but discarded by a component, where the same information as
for emitted events is recorded,

o events received and handled by a component, where the same information is
recorded, as well as the state where the event has been handled, and the optional
target state after the event has been handled.

Figure 14. List of logging messages

Figure 15. Interface to be included by the logging back-

ends

In addition, two messages are defined to turn the logging on or off. Those two messages will
be used by logging back-ends to decide if logs should be handled or discarded, as shown in

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 41

Figure 15. In the ON state, the abstract logger will handle all the incoming logging events and
delegate them to abstract functions, such as log_function_called having the same signature than
the logging messages. Concrete logging back-ends will simply include this abstract component
(called fragment in ThingML) and implement the abstract functions. In the OFF state, all
incoming logging events are simply discarded.

A component that needs logging will include the WithLog fragment defined in Figure 16. This
component will then be able to send the logging messages through a log port. In addition, the
component to be logged needs to define a DEBUG_ID property to identify the component. This
identifier will be passed as the first argument of the logging messages i.e., the inst parameters
in Figure 15.

Figure 16. Interface to be included by the components to be logged

The WithLog fragment can be imported and used manually by developers. This usage, though
fully possible and legitimate, will not be addressed in this document. Rather, our approach
promotes the use of the following annotations:

• @monitor, with possible values functions, properties or events. This annotation only
applies to component types.

• @monitor "not", which can be applied to specific functions, properties or messages.

These annotations allow developer to specify what they want to log, and filter out specific
elements that s/he do not want to include. These annotations will be used to select which of the
model transformations, described in the remainder of this section, should be applied and where
they should be applied. The goal of those transformation is to weave instrumentation code, with
no side-effect, that is as close as possible to what the developer would write if s/he used the
logging framework manually.

Logging ThingML properties
Logging updates on properties is rather trivial, but can have side effects if not implemented
correctly, especially if the property is assigned with the result of an expression involving a
function call (a = c()), as shown in Figure 17.

Figure 17. Effects of instrumenting property assignments

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 42

The variable assignment a = c() is now surrounded by two local variables, which store the
values of the variable before and after the update, without calling c() multiple times, and
serialize them into strings. Finally, the logging message is sent, containing information of the
updated variable, including the old and new values.

Logging ThingML functions
Instead of instrumenting function calls, we rather instrument the bodies of functions. This
strategy has several advantages:

• less instrumentation code needs to be woven into the ThingML model, assuming the
given function is called more than once.

• function calls can either be an action i.e., a standalone one-line statement, or an
expression (as in the variable assignment of Figure 17) potentially included in an
arbitrarily complex action. In the latter case, this implies extracting the function calls
out of the action where they are contained, store their return values into local variables,
update back the action by replacing function calls by variable references, etc. Though
this can be implemented, it would make the transformation more complex.

Figure 18 shows the result of this transformation. First, the actual parameters of the function
are stored and serialized into a string. Then, if the return type of the function is not void, every
return statement is instrumented in a quite similarly to how property assignments are
instrumented (see previous sub-section). Ultimately, a logging event is emitted, describing the
function, its parameters and return value.

Figure 18. Effects of instrumenting functions

The instrumented function has the very same signature than the original function, and no further
update is needed.

Logging ThingML events
Logging messages sent by a component requires to extract the parameters of the message into
separate variables, to avoid side effects. Those variables are used in the updated send action
and in the logging message, as show in Figure 19.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 43

Figure 19. Effects of instrumenting the emission of messages

An event is consumed if a handler (transition or internal transition) reacting on that event is
successfully triggered. Logging consumed messages thus requires instrumenting the action of
existing handlers, as shown in Figure 20. For a given handler, the instrumentation records the
parameters of the message, if any, and sends a logging event. If the handler already defined an
action, the content of this action is appended after the logging instrumentation.

Figure 20. Effects of instrumenting messages that are handled

According to the usual semantics of composite statecharts, events are consumed in-depth first.
If the current state cannot consume an incoming event, then the event is delegated to its parent
state, which might consume it or not. If not, the process repeats, potentially up to the top-level
statechart. If the top level statecharts does not consume the event, it is discarded. For a given
event, we distinguish three cases:

• the original top-level statechart already reacted to this event through a handler with no
guard: the event will always be handled, and there is no need for instrumentation as the
event will never be discarded.

• the original top-level statechart defines no handler for this event i.e., if the event is not
handled by a nested state, it will be discarded. In this case, the instrumentation will
consist in an unguarded handler, which reacts on this event and emits a message_lost
logging event.

• the original top-level statechart defined one guarded handler, or more, for this event. In
this case, the instrumentation should only catch the event if the existing guard(s)
evaluate(s) to false, as shown in Figure 21.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 44

In Figure 21, we consider that the original statechart was reacting on event p?m - i.e., a message
m received on a port p. This message contains an integer parameter a. More precisely, the
statechart reacts to this event through two guarded internal transitions, which will catch the
event iff a>100 or a<100. An experienced eye would notice that this event will never be caught
if a == 100, which is exactly what we want to log by creating a similar internal transition, also
reacting on p?m, which will trigger iff the other two internal transitions do not. This is achieved
by guarding this new transition with the Boolean conjunction (and) of the negation (not) of the
existing guards on that event p?m.

Figure 21. Effects of instrumenting messages that are discarded

3.2.3.3 Evaluation
Our logging approach is implemented as an extension to the ThingML framework and is
available under the Apache 2.0 Open-source License. It is implemented in about 1000 lines of
Java code organized as follows:

• MonitorAspect: An interface defining a monitor method, which abstracts the currently
available monitoring/logging aspects:

o PropertyMonitoring: implementing the model transformation presented in
Section 4.2.3.2.1.

o FunctionMonitoring: implementing the model transformation presented in
Section 4.2.3.2.2.

o PropertyMonitoring: implementing the model transformations presented in
Section 4.2.3.2.1.

• MonitorGenerator: this class browses the ThingML model and based on the
annotations available in the model will instantiate and execute the different monitoring
aspects.

The scripts used in the quantitative evaluation (Section 4.2.3.3.1), as well as all the input data
(ThingML models) and the data generated by those scripts (instrumented ThingML models,
generated code for Java, JavaScript and Go, and logs resulting from the execution of this code)
are available under the Apache 2.0 Open-source License. The dashboard we developed as part

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 45

of the qualitative evaluation (Section 4.2.3.3.2) is also available under the Apache 2.0 Open-
source License.

Quantitative impact of logging instrumentation
In this experiment, we measure the runtime overhead of our approach, by measuring the RAM
consumption and the execution of a medium-sized ThingML program. Three versions of this
program are benchmarked:

• no: Original program without logging instrumentation

• off: Instrumented program, but with the actual logging turned off. This means that the
program will emit log events, which will be received and simply discarded by the
logging back-end.

• on: Instrumented program, with logging turned on. For this experiment the logging
back-end will simply print to the standard output, which is re-directed to a file.

The results of this section have been produced by executing the four scripts contained in
ThingML-logs-xp/src/main/bash:

• 00_build_ThingML.sh: builds a special version of ThingML, also including our logging
tool, and exposes it as a Docker container.

• 01_instrument_models.sh: weaves the logging instrumentation (for all properties,
functions and events) into the base ThingML model.

• 02_generate_code.sh: generates code (using 1) for Java, NodeJS and Go, from the base
ThingML model (no) and the instrumented ThingML model, with logging off and
logging on.

• 03_run_in_docker.sh: runs the produced Java, NodeJs and Go code into separate
containers, 100 times in each mode (no, off and on) and collects logs.

The input ThingML model already contains instrumentation to monitor the memory and total
execution time of the program, which is used to produce metrics for all 900 executions of the
target programs: three modes (no, off and on) and three languages (Java, NodeJS, Go), executed
100 times each.

Impact on memory
Figure 22 shows the memory consumption for the three different languages, in the three
different modes. Rather unsurprisingly, we observe an increased memory consumption: having
the log instrumentation (depicted as off in the figure) consumes more memory than not having
it (depicted as no in the figure) and turning on the actual logging (depicted as on in the figure)
again increases the memory consumption. The memory consumption is about +7% in on mode
compared to no mode for Java, about +8% for NodeJS, and +9% for Go. The memory
consumption increases rather linearly along the three modes in NodeJS and Go. We observe a
different pattern in Java, where most of the overhead is already present in off mode.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 46

Figure 22. Use memory in Java, JavaScript and Go, without log instrumentation (no), with log instrumentation inactive (off)

and active (on)

Impact on execution time
Figure 23 shows the execution times for the three different languages, in the three different
modes. Rather unsurprisingly, the original programs (no instrumentation) yield the fastest
execution times. We observe two different patterns:

• In NodeJS, the overhead of the logging instrumentation, when the logging back-end
simply discard all logging events (off mode) is negligible. However, the overhead when
the logging back-end is active is (on mode) is rather large: about +18%.

• In Go and Java, the overhead in off mode (+2% in Go and +3% in Java) is larger than
the overhead in on mode (+1% in Go and +1% in Java). In any case, this overhead is
rather well contained.

Figure 23. Execution times in Java, JavaScript and Go, without log instrumentation (no), with log instrumentation inactive

(off) and active (on)

Explaining the large overhead on the execution time if NodeJS in on mode requires more
investigations, in particular to determine if this overhead is the fact of:

• the NodeJS interpreter, which we deem rather unlikely,

• the chosen logging back-end (i.e., prints to the standard output redirected to a file),
which we deem rather likely,

• the logging instrumentation, which we deem very unlikely given the negligible
overhead in off mode, where logging events are emitted by our test program and
received by the logging back-end, and then simply discarded, or

• the experimental setup itself (e.g., the fact that we execute NodeJS within Docker
containers), which we deem very unlikely, given the other two languages are not
affected by this issue, and that Docker should in principle be oblivious from what
actually runs within containers.

A more important issue is that the C code generated from the instrumented ThingML model
cannot be compiled as-is by GCC or other C compilers. We plan to overcome this issue for
deliverable D2.3.

Qualitative evaluation

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 47

We created the web-based dashboard shown in in Figure 25. This dashboard receives a stream
of raw log events and provides developers with details about the status of their target program,
in terms of ThingML concepts.

The communication between the ThingML logging framework and the dashboard is made using
MQTT. Rather than directly printing logs to the standard output, as we did in Section 3.2.3.3,
we now use a MQTT logging back-end, partly generated by the ThingML framework [15]. The
log messages are received by this MQTT logging back-end, automatically serialized into JSON
(as shown in Figure 24 and published on a MQTT topic.

Figure 24. Example of a log message

MQTT has been selected because as it follows the Publish-Subscribe pattern as it is scalable
and offers great space, time, and synchronization decoupling [20]. Scalability is important as
events can be published at a high frequency (e.g., up to 6 messages per milliseconds in our
simple example). The raw log events are published on different topics based on the categories
defined in Section 3.2.3.2.

Figure 25. Screenshot of the ThingML logging dashboard

Using those raw log events, we were easily able to provide developers with the following
information:

• The current value for the monitored properties of the ThingML model (see the top table
in Figure 25).

• The current state (in term of the ThingML state machine) in which the program is.

• The previous state, in which the program was just before the current one.

• The time spent in the current state in milliseconds.

• The time when the program entered in the current state.

• The state in which the program has spent most time.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 48

• The number of messages emitted by the program since it started.

In addition, all the log events are displayed in a table and can be sorted and filtered (see bottom
table in Figure 25). Our systematic and automatic logging approach, combined with this
dashboard can be seen as a sort of models@runtime approach [21], where the execution of
programs generated from ThingML can be traced so as to dynamically re-construct the original
ThingML model.

In the following section we discuss the relationship between GeneSIS and the major IoT
platforms and commercial solutions.

 Integration with existing platforms
Real IoT systems are seldom developed from scratch but rather build upon off-the-shelf
components, legacy sub-systems. In addition, they can rely on the wide range of IoT platforms
that have been developed over the past decade. We investigated the integration of GeneSIS and
ThingML with the main IoT platforms and commercial solutions and in particular, the
integration with FIWARE, SOFIA (the SMOOL variant), and Microsoft IoT Hub.

Integration with FIWARE
FIWARE is defined as a “framework of open source platform components which can be
assembled together and with other third-party platform components to accelerate the
development of Smart Solutions.”13. We decided to integrate GeneSIS with the FIWARE Orion
Context Broker as it is the central element of the FIWARE platform. Orion is the only
mandatory component of any “Powered by FIWARE” platform. It allows managing the entire
lifecycle of context information, including the possibility to create context elements and to
manage them through updates and queries. It is important to note that integrating the Orion
Context Broker in a SIS seamlessly provides it with access to the whole FIWARE ecosystem
and in particular to the Generic Enablers.

GeneSIS supports the deployment and orchestration of SIS integrated with the Orion Context
Broker in two ways. First, GeneSIS can manage the deployment, configuration, and adaptation
of Orion as any other software component. As depicted in Figure 26, a specific component type
has been created and is available by default when starting GeneSIS. More precisely, this
GeneSIS component is a subtype of Internal Software Component. It is worth noting that this
component exposes a mandatory Required Communication Port (meaning that Orion will not
work properly if the dependency is not accessible) as a MongoDB datastore is required for
Orion to execute properly. The example of deployment model involving Orion depicted in
Figure 26 is available at the following address:
https://gitlab.com/enact/GeneSIS/tree/master/docs/examples.

13 https://www.fiware.org/developers/catalogue/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 49

Figure 26. Deployment model involving the FIWARE Orion Context Broker

Second, in order to facilitate the interactions between the software components of a SIS and
Orion, we created a simple REST-based proxy that can be placed in front of an instance of
Orion. It is implemented using Node-RED (see Figure 27) and can thus be easily dynamically
adapted.

Figure 27. Querying the Orion Context Broker using Node-RED

Integration with SMOOL
SMOOL [22] is an IoT middleware that aim at providing a publish/subscribe communication
infrastructure to facilitate the creation of IoT applications. SMOOL is developed by
TECNALIA and leverages the Smart Space Access Protocol (SSAP) developed in SOFIA.
SMOOL applications consist of a set of Knowledge Processors (KPs) that exchange data via a
Semantic Information Broker (SIB). SMOOL comes with a KP generation wizards. The wizard
can be used to generate a project in the Eclipse IDE, which includes all the code necessary to
interact with a SIB. Developers can then add the application specific logic to the KPs according
to the functional requirements of the smart application [22].

A SMOOL KP can be deployed by GeneSIS as any other software component. In addition, we
integrated the SMOOL KP wizard with ThingML. As a result, a single Eclipse IDE can be used
to generate the code of a KP, which can then be directly used as part of a ThingML program.
The proper Maven manifests are automatically created facilitating the building and release of
the desired application. Details about this integration can be seen in the following video:
https://www.youtube.com/watch?v=mfT_AwfkXNc

Integration with Microsoft IoT Hub
Microsoft IoT Hub14 is a platform to connect, monitor, and manage Edge and IoT devices. More
precisely, it provides mechanisms to enable communications between IoT, Edge, and Cloud

14 https://azure.microsoft.com/en-us/services/iot-hub/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 50

devices together with mechanisms to support the reliable deployment of software components
over large set of edge devices. When combined with the Azure IoT DevKit, it is also possible
to deploy and update firmware on IoT devices with limited resources. However, to do so, it is
required to run agents on the edge devices (in the form of docker containers) or specific software
component for smaller IoT devices (for instance see: https://github.com/Azure/azure-iot-
arduino) thus creating what can be considered as a vendor lock-in.

The integration of GeneSIS with the Microsoft IoT Hub is currently under development. We
foresee two types of integration:

1. Using GeneSIS to trigger new IoT Hub deployment. This would also allow breaking the
vendor lock-in by enabling the deployment and management of software components
via the Microsoft IoT Hub together with other technologies.

2. Deploying GeneSIS on edge devices using Microsoft IoT Hub and using it to manage
small devices. This will help achieve the remote deployment and management of the
IoT systems without a direct IP-based connection to the main edge device, which in turn
improves the scale of IoT systems that GeneSIS can achieve.

 Synthesis
In the following, we evaluate how our approach addresses the requirements defined in (i)
Section 3.1.1 and (ii) the current status with respect to the use case requirements as defined in
D1.1.

• Abstraction and Infrastructure independence (R2): By leveraging model-driven
engineering techniques, the GeneSIS modelling language offers a single domain-
specific modelling language and abstraction that enables the management of application
deployed on IoT, edge, and cloud infrastructure. Independently of IoT layers, these
resources as well as the software components can be abstracted in a homogeneous way
as components. In addition, by applying the Models@Run-time pattern, the GeneSIS
execution environment provides an abstract and up-to-date representation of the running
system that can be dynamically manipulated.

• White- and black-box infrastructure (R3): The GeneSIS modelling language embeds
the necessary concepts for the GeneSIS execution environment to distinguish and
orchestrate white-box (i.e., resources on top of which GeneSIS can manage a software
stack) and black-box resources (i.e., resources coming with a software stack that cannot
be manipulated). More specifically, we refer here to the concept of InternalComponent
and ExternalComponent, respectively.

• Automation and adaptation (R4): From a deployment model, GeneSIS supports the
fully automated deployment of a SIS. The GeneSIS deployment agent enables the
deployment of software component on devices with limited access to Internet. By
applying the Models@Run-time pattern, and thanks to its Facade, GeneSIS provides
developers and autonomic managers with the means to enact adaptations of the
deployment of SIS.

• Security and privacy (R5): Regarding security and privacy mechanisms, using the
GeneSIS it is possible to specify the security and privacy capabilities provided and
required by a component.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 51

• Safety (R6): Regarding actuation conflicts, the GeneSIS modelling language facilitate
the identification of concurrent accesses to actuators and allow electing a software
component as the controller of an actuator, meaning that all accesses to the actuator
should be done through that component.

Table 2. Requirements from D2.1

ReqID Requirement Description Status at M15
UC1-3
R1

Scalability GeneSIS should be able to deploy SIS
involving hundred sensors/actuators.

Not yet available. Scalability has not
been a main concern so far but will be for
D2.3. Largest deployment involved 15
nodes. Integration with Microsoft IoT
Hub will help fulfilling this requirement.

UC1-3
R2

Scalability The GeneSIS modelling language
should be able to represent
deployments involving hundred
sensors/actuators.

Not yet available. Scalability has not
been a main concern so far but will be for
D2.3. Largest deployment involved 15
nodes.

UC1-3
R3

Trustworthine
ss and Agility

GeneSIS should support the re-
deployment (e.g., moving one software
node from one host to another), re-
configuration, and update (install new
version of a software node) of software
components.

Partially covered. A first version of the
“Diff” in the GeneSIS models@runtime
engine has been developed. Support for
re-deployment is available.

UC3
R4

Trustworthine
ss

GeneSIS should help identifying direct
actuation conflicts (i.e., concurrent
accesses to a same component).

Available. GeneSIS provide the
controller mechanisms and can be
consumed by the actuation conflict
management enabler.

UC1-3
R5

Scope GeneSIS should be able to deploy SIS
involving IoT, edge and cloud
infrastructures.

Available. GeneSIS can successfully
deploy over IoT, Edge, and Cloud
infrastructure. Test has been made against
deployment models involving: Arduino,
RaspberryPI, regular laptops, and AWS
clouds resources

UC1-3
R6

Scope The GeneSIS modelling language
should be able to represent deployment
over IoT, Edge, and cloud
infrastructure

Available. GeneSIS can successfully
represent deployment involving IoT,
Edge, and Cloud resources. Test has been
made with deployment models involving:
Arduino, RaspberryPI, regular laptops,
and AWS clouds resources

UC1-3
R7

Trustworthine
ss

The GeneSIS language will support the
specification (i) of the security
mechanisms to be deployed and (ii) of
metadata (e.g., software version) for
each of the elements in a model.

Partially covered. The GeneSIS
modelling language has been extended
with concepts to specify required and
provided security and privacy capabilities
and to how the required capabilities can
be fulfilled.

UC1,3
R8

Integration GeneSIS should properly integrate
with classical IoT middleware (e.g.,
SMOOL, SOFIA2)

Available. Integration of GeneSIS via
ThingML has been done and tested.

UC1-3
R9

Elasticity GeneSIS should support the
provisioning of cloud resources.

Partially covered. Integration with the
CloudML provisioning engine is ongoing.

UC1-3
R10

Elasticity The GeneSIS modelling language
should provide the necessary concept
for specifying the cloud resources to be
provisioned.

Available. GeneSIS leverage the
CloudML approach to specify the
provisioning of multi-cloud resources.

UC2
R11

Monitoring The GeneSIS language should include
the necessary concepts to reflect
directly in the language run-time data.
In particular information about the

Partially covered. GeneSIS implements
the models@runtime pattern, which
provides a mean to enhance deployment
models with runtime informations. At the

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 52

deployment and infrastructure status as
well as about the execution flow of
ThingML programs.

current moment GeneSIS monitors
information about the status of a
deployment.
A first version of the mechanisms to
monitor the flow of ThingML programs is
available. The monitoring of

Table 3. Requirements from D1.1

ReqID Requirement Description Status at M15
TO1.1

ITS use case Real Time Traffic Management Plan
updates on On-Board Systems.
Demonstrate the remote and
continuous deployment of, at least, two
cabins with OTI and a Plan update
during the operation part.

i.Including at least 2 gateways and 2 IoT
devices

ii.Including at least 1 cloud resource
iii.Including at least 2 deployments
iv.Including at least 1 updated software

component

Ongoing. GeneSIS has not yet been
applied to the on-board systems.
However, we demonstrated the
deployment on at least 2 gateways, 2 IoT
devices, 1 cloud resource.

TO1.2

ITS use case SW development for the
infrastructure deployed. Agile
Software deployment on the CMWs
Demonstrate a valid deployment with
lack of human interaction in a reduced
amount of time (limited by the device)
increasing the efficiency in operation
time and workload.
Demonstrate the remote deployment of
the CMWs: (i)Including at least 2
gateways and IoT devices, (ii)
Including at least 1 cloud resource

Ongoing. GeneSIS has not yet been
applied to the on board systems. However,
we demonstrated the deployment on at
least 2 gateways, 2 IoT devices, 1 cloud
resource.

TO4.1

ITS use case Demonstrate the integration of the
ITS SIS with the FiWARE (Orion
Context Broker)

Done. Integration with the Orion context
broker has been demonstrating in a lab
setting. Demonstration in the context of
the use case will be done in collaboration
with WP1

TO1.1

eHealth Continuous deployment across the
IoT, edge and Cloud space.

i.Include at least 2 IoT&Edge nodes
and 2 cloud nodes.

ii.10 Multiple deployments
iii.Includes orchestration, setting up

interoperation with “no
downtime”

Partially covered. Deployment on IoT,
Edge and cloud resources has been
demonstrated. We are currently working
on the support for multiple deployment.

TO1.2 eHealth Automatic change or upgrade.
Demonstrate 5 changes or upgrades of
5 independent Gateways. Performed
automatically and without need of
physical intervention (or minimize
physical intervention)

Ongoing. Update of software component
has been demonstrated using Ansible.
Work is currently done with WP4 and the
diversifier at runtime to manage multiple
upgrades in a more generic way.

TO1.3 eHealth Automatic Pairing of devices with
Gateway after reset.

Not started.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 53

 At least 5 different devices
automatically paired with Gateway
after reset

TO1.1 Smart building Interface with DSS.

The Orchestration
enabler interacts with the DSS enabler
to provide it with the list of devices
selected as part of the SIS.

Done. Risk management is able to
consume GeneSIS deployment models
and can thus retrieve the list of devices
involved in a deployment.

TO1.2 Smart building Integration with SOFIA/SMOOL.

Demonstrate the integration of the
Orchestration and deployment enabler
with the SMOOL platform:
(I) Demonstrate the continuous
deployment of SMOOL client and their
automatic integration with SMOOL
broker.
(II) Demonstrate data exchange of the
deployed components via SMOOL.

Done in lab context. Integration has been
achieved between ThingML and
SMOOL. This has now to be applied in
the context of the use case in collaboration
with WP1.

TO1.3 Smart building Deployment of the use case
applications
Demonstrate the continuous
deployment of the two smart building
applications. Including actuation
conflict managers and S&P monitoring
probes.

Ongoing. GeneSIS has been extended to
support the specification security and
privacy concepts (i.e., specifying which
S&P mechanism should be used).
Validation is ongoing. Deployment of
actuation conflict managers is already
supported.

4 Identifying, analysing and managing
actuation conflicts

 Overall presentation of the enabler

 Illustration and Motivation
Since SIS are not limited to collect sensors data but also act on the physical environment, new
software challenges appear for supporting their development and the operation. One of them is
the management of actuation conflicts when different applications interact concurrently on
shared devices or within a shared physical environment (e.g. Figure 28). Then, tools must
handle these interactions so as to prevent non-anticipated evolutions of the physical
environment.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 54

Figure 28: SIS and Actuation Conflits

A direct conflict occurs when simultaneous antagonist accesses are triggered to a shared
software resource. In DevOps for IoT, these resources are mostly located in front of the
actuation systems and a conflict occurs when at least two applications, a priori independent, try
to access a shared actuation system.

For instance, imagine a first application switching the light on when it detects a presence in the
room. Then we consider a second application switching the light off when the TV is in use.
This situation may result in a blinking light, but this is even not sure!

Sometimes actuation conflicts are more insidious, and we talk about indirect actuation
conflicts. They appear when two applications act on separate actuation systems whose effects
interfere with each other through the physical environment. Effects resulting from these actions
may become non-anticipable. In such a case, conflicts are not detectable from the software
application models.

For instance, in the TECNALIA KUBIK smart building, blowers manage heating, ventilation
and cooling. If one considers two blowers acting in the same room, both can blow hot air, cold
air, or can be stopped. Since both devices are independent and do not communicate with each
other, it is possible that one blower is blowing hot air while the other one is blowing cold air.
The resulting behaviour is obviously counterproductive and needs to be avoided. Managing
such situation is not trivial. What is the right strategy to adopt? Stop one blower when the other
is doing the opposite action?

Then two kinds of questions arise in solving actuation conflict. First, how the system must
behave under conflict? This is often an end-user concern. Second, how to be sure that the
conflict resolution is effective? This is more often a developer concern. So, Actuation Conflict
Management Enabler (ACM Enabler) must provide user-friendly test and validation tools for
designing the actuation conflict manager.

In previous deliverables we identified a list of requirements. Some are regarding actuation
conflict management in use case providers requirements (Table 2). Others are more technical
requirements for actuation conflict management (Table 1).

Table 4: Actuation conflict management requirements as defined in D2.1

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 55

R1 Accuracy
Modelling tool for a comprehensive actuation system integrating
models of the physical environment and its evolutions according to the
interactions with competing applications.

R2 Usability Shall integrate a user-friendly tool for actuation conflict manager
design, based on simple and interpretable modelling frameworks.

R3
Trustworthiness

(reliability)

Shall help identifying direct and indirect actuation conflicts

R4 Reusability Shall permit the reusability of solutions already designed for similar
cases

R5 Trustworthiness
(reliability)

Shall aid in the design of the conceptual model of the conflict
controller (e.g., Formal test & verification)

R6 Trustworthiness
(reliability)

Shall provide tools for testing actuation conflict managers through an
operational model (intended to validate conflict resolution solutions in
an operational context)

R7 Trustworthiness
(reliability)

Shall manage actuation conflicts despite black box components in
different targeted platforms

R8 Adequacy Conflicts resolution at run-time shall be automated as much as
possible.

R9
Trustworthiness

(safety)

Shall provide actuation conflict alerts during the deployment of a SIS.

R10 Monitoring &
trustworthiness (safety)

Shall continuously monitor behavioural drift to assess deployed
solutions.

R11 Monitoring &
traceability

Shall trigger a new actuation conflict manager development from the
quantitative behavioural drift assessment value/threshold.

R12 Scalability Shall provide tools allowing managing hundreds of sensors and
actuators, thus tens of actuation systems.

R13 Scope Actuation conflicts management tools shall support several targets
ranging from IoT, Edge to cloud.

R14 Integration
Actuation conflicts management tools shall support different kind of
frameworks (GeneSIS, ThingML, Node-Red) and middleware
(SMOOL, SOFIA2, etc.).

Table 5: Actuation Conflict Management Enabler Requirements in D1.1

DO-3.3.1

DO-3.3.4

SW updates conflict INDRA,
Rail Use
Case

Prioritization of the orders must be done

DO-3.3.2 Monitoring Interface INDRA,
Rail Use
Case

The Context Monitoring and Actuation Conflict
Management Enabler and the Monitoring Enablers
must have a GUI.

DO-3.3.3 Low delay alerting INDRA,
Rail Use
Case

Low delays of alerting to the rail operator in order to
avoid critical accidents

DO-3.3.6 Conflicts in actuator
resource - inter IoT
systems

TECNALIA,
Smart

The Conflicts Enabler should be able to identify and
avoid conflicts in colliding commands sent to same
actuator by two IoT apps.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 56

Building use
case

DO-3.3.7 Conflicts in physical
variable actuation -
inter IoT systems

TECNALIA,
Smart
Building use
case

The Conflicts Enabler should be able to identify and
avoid conflicts in commands sent to actuators
affecting the same physical variable, by two IoT apps
at the same time.

 Overall Approach
The ACM Enabler provides a set of tools to assist developer for detecting and solving actuation
conflicts. These tools depend on different models provided as inputs to the ACM Enabler. These
models are: (1) GeneSIS deployment model, (2) different kinds of internal models of GeneSIS
components (i.e., model of deployable artefact’s architecture), and (3) physical environment
models for the specific case of indirect actuation conflict. In ACM Manager V1, we assume
that internal models of the deployable artefacts are assemblies of components like in Node-Red.
A physical environment model is only a list of actuators, which interact with each other though
the physical environment.

In order to reason on a unique model dedicated to actuation conflict management, a first tool
computes a common “Workflow and Interaction Model for Actuation Conflict Management”
(WIMAC) from the different input models as described above. WIMAC V1, restricted by above
assumptions, is defined by the metamodel depicted in Figure 43. WIMAC is used to detect
direct and indirect actuation conflicts (both kind of conflicts introduced in section 4.1.1) and
solve actuation conflicts by inserting ACM solutions before deployment. They propose two
approaches for assisting the developer in managing actuation conflicts:

• A first approach aims at providing some predefined solutions for simultaneously solving
a large set of conflicts in a large-scale SIS.

• A second approach aims at providing tools for designing a new and reliable solution for
a specific and problematic actuation conflict, hereafter called custom ACM. The
behaviour of the custom ACM is specified and modelled as a Finite State Machine
(FSM) for facilitating model checking.

In the first approach, the actuation conflict detection and solving tool is based on graph and
model transformation algorithms. Detection and transformation are defined from a set of rules.
These rules correspond to some actuation conflict patterns used to (1) detect conflicts within
WIMAC and (2) apply corresponding transformations to insert off-the-shelf actuation conflict
managers (ACM). Thereby, a new WIMAC is computed, providing a new GeneSIS deployment
model and required ACM components.

In the second approach, a design workflow is proposed for designing new and reliable actuation
conflict managers aiming at addressing specific and problematic cases. The workflow consists
in the following stages:

(1) A new actuation conflict manager (ACM) is described from some Extended ECA rules
(Event-Condition-Action), where actions not only govern ACM outputs but may also
govern ACM internal state evolution.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 57

(2) The transformation of a set of Extended ECA rules into a required equivalent Mealy
FSM is applied, enabling ACM formal verifications. Then, most of the well-known
model checkers can be used to verify formal properties such as safety (example in
[ressouche2011.enw]).

(3) Finally, the corresponding software components are generated according to the targeted
execution platform (e.g., Node-RED, ThingML, …), and instantiated into a new
extended GeneSIS deployment model.

Figure 29 illustrates the different steps for managing actuation conflicts with the Enabler. A
first step consists in the synthesis of a WIMAC from a GeneSIS model, GeneSIS components
internal models (e.g., Node-RED assembly, ThingML) and from the physical environment
model. Components that are part of the software orchestration are represented in blue, red
components are participating to the actuation system, green components are provided services
in the cloud. The second step is based on conflict patterns recognition and associated
transformation rules to insert ACM in WIMAC at a large-scale level. Red and green colour
filled components depict two different inserted ACM. The third step is required when developer
must customize safe and reliable ACM for a problematic conflict point. Thanks to the tools
introduced in section 4.2.2, a new ACM is designed and inserted (blue color filled component
in Figure 29). Finally, the new WIMAC is then deployed including the implementation of the
inserted ACM.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 58

Figure 29: Overall Actuation Conflicts Management Workflow

 Highlights
The first released set of tools for actuation conflict management in SIS follows several
innovative principles associated to the tools:

• A new language to describe a Workflow and Interaction Model for Actuation Conflict
Management (WIMAC): Actuation conflict management Enabler requires a WIMAC used
to detect and manage actuation conflicts. This model is generated automatically from (1)
the SIS deployment model (written with the GeneSIS modelling language) (2) the set of
GeneSIS components internal models (including but not limited to Node-Red and
ThingML) and (3) a model of the impacts of the actuations on the physical environment.
To the best of our knowledge there is no language similar to WIMAC focusing on the
management of actuation conflicts. WIMAC is one of the main concepts of the actuation
conflict management Enabler. Its metamodel will be incremented according to the use case

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 59

providers and developers’ feedback. A first version of the metamodel is described in section
4.2.3.

• A generic tool for Actuation Conflict Detection and Solving for large scale SIS:
The first challenge, SIS are generally not limited to small sets of sensors and actuators.
Because they are often large-scale systems.it consists in providing a tool for deploying
ACM solution in a systematic manner (see section 4.2.1).

This tool must be generic. The tool and its associated algorithms must support possible
modifications of WIMAC and new actuation conflict patterns resulting from further
experiments. The labelled graph transformation algorithm (i.e., graph rewriting) in use
allows to define WIMAC transformations that can be written independently of WIMAC
version.

• Designing Safe and Reliable Custom Actuation Conflict Manager (ACM):
The second challenge consists in managing actuation conflicts that may occur and requiring
special attention. Tools are then required for designing a custom and reliable actuation
conflict manager. This challenge is close to that of the control of hybrid systems15, that
requires some specific tools for designing and testing a reliable controller using sensors and
actuators for controlling a local physical environment (see section 4.2.2).

These two simultaneous challenges justify the innovative approach mixing large scale
actuation conflict management, thanks to predefined off-the-shelf solutions, and local
conflict management, thanks to some specific and reliable solutions for the problematic
cases.

Next section about technical presentation and highlights will detail the different tools that
cooperate in ACM Enabler V1.

 Technical presentation
In this technical presentation, Section 4.2.1 describes the tool to detect and solve actuation
conflicts at a large-scale level. The solving methodology is only based on predefined actuation
conflict solutions. Section 4.2.2 describes the tool that supports the design of specific and
reliable ACM components. Finally, section 4.2.3 illustrates the use of our ACM Enabler V1.

 Actuation Conflict Detection and Solving for large scale SIS
The challenge is to provide a tool for detecting and solving actuation conflicts based on our
WIMAC, assuming that SIS are most of the time large-scale systems. So, one needs to find a
generic and scalable approach based on generic algorithms that can be applied to WIMAC and
the various actuation conflict types.

Thus, we define an appropriate way to modify WIMAC by adding ACMs on the right conflict
points. ACMs can either be effective at resolving conflicts, or just forward components used
for monitoring activity at the conflict point (denoted by “monitors” in the sequel). The method
consists in defining some patterns representing typical conflicting types. Then, the
transformation rules associated to these patterns are applied on WIMAC model for instantiating

15 A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 60

ACMs. Numerous tools for graphs and model’s transformation are available on the market.
Among these tools, a domain independent one, called AGG, is selected so as to be able to handle
heterogeneous models.

In the current release of the tool, the "Attributed Graph Grammar" (AGG) is used together with
its development environment (called “AGG”) which supports an algebraic approach for
applying graph transformations. It provides us with the capability to define conflict patterns in
the form of an attributed graph and their associated transformation rule also in the form of an
attributed graph. Then, AGG manages a set of transformations applied upon corresponding
conflict patterns detection.

AGG may seem like a quite heavy solution to apply few transformation rules such as described
in the example below. Nevertheless, our objective is to allow developer to add new
transformation rules for being able to address some new actuation conflict patterns and to apply
a greater number of rules.

Figure 30: Actuation Conflict Detection and Solving in a large-scale level with AGG

As depicted in Figure 30, in order to integrate AGG into the workflow, AGG model is extracted
from WIMAC and after conflicts solving, new AGG model allow to modify WIMAC /. Because
WIMAC is likely to evolve during ENACT lifecycle, the aforementioned tools are not dedicated
to WIMAC as described in section 4.2.3.

The AGG model is built upon Entities representing types of nodes and edges. Each entity has
an ID and a name. This model can be modified by Rules, composed of two graphs. The first
graph is called LHS (Left Hand Side) and represents a sub-graph (a pattern) to be searched for
in the AGG model. The second graph is the RHS (Right Hand Side) and represents the
transformation to be applied on the AGG model when the pattern described in LHS has been
found (Figure 31). The AGG model can be serialized into an XML file.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 61

Figure 31: A graph rewriting rule (LHS is search pattern and RHS is how to transform the identified pattern)

As depicted in Figure 31, during an AGG transformation, ACM components are added, resulting from
the RHS transformations. WIMAC is first transformed into its AGG counterpart, further
complemented with transformation rules and resulting into a .ggx project file. It is worth noting
that transformation rules are flexible, i.e., they can be added to an existing project, removed or
modified on the fly. The transformation process is started as soon as a project file is made
available. During this process, transformation rules are applied until none can be applied
anymore, resulting in a modified AGG graph. It is worth noting that, in this context, different
algorithms will be investigated in order to prevent, for instance, cyclic transformations that may
result from AGG transformation process, etc.

In the current version of the ACM Enabler, three main conflict management rules can be applied
to the AGG model. The first rule (Figure 32) allows to handle direct conflict preventing two
software components to access the same resource except if, obviously, this resource is an
ACM. The second rule (Figure 33) handles indirect conflicts by adding an ACM before
resources thereby, preventing counterproductive effects to be produced in the environment
through actuators. Finally, the third rule Figure 34 allows to add monitors to specific
resources for further investigations.

Figure 32: AGG rule for direct conflict

Figure 33: AGG rule for indirect conflict

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 62

Figure 34: AGG rule to add monitor before actuator (action node)

At the end of the transformation process, the modified AGG model can further be transformed
to its WIMAC counterpart.

In the case of blowers (see section 4.1.1), the two independent blowers are indirectly conflicting
since both modify the temperature of a shared physical environment. The associated WIMAC
model is depicted in Figure 35 where each blower is represented by a software component and
an action via actuators, each action being linked to a shared physical process. This model is
transformed into its AGG counterpart depicted in Figure 36.

Figure 35: WIMAC model for indirect conflict type

Figure 36: AGG graph corresponding to the WIMAC model

depicted in Figure 35.

Once imported, the transformation process is started. It tries to apply the first rule (Figure 32,
for direct conflict), but the pattern does not match since, in that particular case, there is no direct
conflict. Similarly, the second rule cannot be applied at this step but the third can (Figure 34).
Because the algorithm tries to applied all the rules until a last stable graph is reached, the second
rule (Figure 33) can thus be finally applied, thereby instantiating an ACM, resulting in the graph
depicted in Figure 37.

Figure 37: Resulting AGG graph after applying all possible rules.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 63

 Designing Safe and Reliable Custom Actuation Conflict
Manager

The second main challenge for actuation conflict management consists in providing tools for
designing reliable actuation conflict managers (i.e., custom ACM) intended to address specific
and problematic cases. Because a custom ACM must be validated by our tools chain, we choose
to describe it as a finite state machine like Mealy machine [23]. Designing custom ACM may
be quite complex but new ACM becomes off-the-shelf ACM for future actuation conflict
solving.

4.2.2.1 Actuation conflict Manager Design facilities
In this section, we introduce a toolkit aiming at supporting the design of reliable ACMs and
targeting problematic conflict points.

The proposed approach is divided into different modelling levels. The first level focuses on the
behavioural logic, which is represented by a finite state machine (FSM). FSM is then described
with a modelling language, such as State Chart XML (SCXML), compatible with numerous
formal verification tools. The second level focuses on generating FSM execution engine (i.e.,
implemented ACM Component). FSM execution time is bounded thus keeping the response
time of the conflict manager within acceptable delays.

However, designing an FSM can be quite a complicated task, the number of transitions and
states being potentially high. A first challenge is then to provide developers with a user-friendly
interface. Because of its popularity for End-user programming, especially in the smart building
domain, we chose kinds of Event-Condition-Action (ECA) rules to specify ACM. An ECA rule
can be read as follows: “On this Event, if the Condition is true, then do this Action”.

Unfortunately, ECA formalism is close to combinatory logic, free from the concept of state.
Thus, FSM states have to be defined when designing FSM from ECA.

This motivates the introduction of Extended ECA programming models which natively define
internal states. With Extended ECA rules in hands, we propose to translate them into the Mealy
FSM, which can be described through SCXML format. This format is specifically designed for
modelling Finite State Machine and possibly provides room for further evolutions through
hierarchical features, parallel state and intern metamodel creation.

4.2.2.2 Extended ECA rules to Mealy Finite State Machines
Each extended ECA rule contains all the necessary elements used to define state-transitions in
the Mealy FSM. Each state-transition is defined by:

• The statefrom, the state-transition starts from,

• The stateto, the state-transition ends to,

• An input event (possibly multivariate) required to
initiate the state-transition,

• A condition to be satisfied to grant the state-transition,

State	from

Command

State	to

Input	event	&	Condition

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 64

• A command (Action) to be emitted while transiting from the starting state to the ending
state.

A custom ACM contains as many Mealy FSM as devices trying to modify a shared resource.
A shared resource can either be an actuator (direct conflict, Figure 38) or a physical property
whose value can be modified through different actuators (indirect conflict, see Figure 38 and
Figure 39).

Figure 38: Custom ACM for indirect conflicts mgmt.

Figure 39: Custom ACM for direct conflicts mgmt.

Each Mealy FSM represents the evolution of the commands to be sent to the actuator(s) in
response to the input events, potentially inhibited if the defined state-transition condition is not
satisfied.

An extended ECA rule is defined as follows:

ON EVENT IF CONDITION DO ACTION

Where:

EVENT : Input(<value>) OR INIT()
CONDITION : State(<state_name>)
ACTION : State(<state_name>) OR Output(<value>)

For instance, a state-transition from the state “s_1” to the state “s_2” can be described by:

ON Input(i) IF State(“s_1”) DO State(“s_2”)

Then, a command emission can be described by:

ON Input(i) IF State(“s_1”) DO Output(o)

Finally, one can define an initial state to start with by:

ON Init() IF true DO State(“s_1”)

Let us use the examples provided in section 4.1.1 to illustrate how to generate a Mealy FSM
from an Extended ECA programming model. The Extended ECA code snippet below is an
implementation of an indirect conflict manager inherent to blowers trying to modify the
temperature of a shared physical environment. The main (yet simple) idea underlying this
implementation is to prevent counterproductive effects to be produced in the environment by

Set	of	inputs	
governing	
device	N
evolution

Set	of	inputs	
governing	
Device	1	
evolution

1_1
…
1_$

Device
1

Device
N

Shared	physical	
process

In
pu
t	c

om
m
an
ds

O
ut
pu
t	
co
m
m
an
ds

Sub-FSA	N	(device	N)

Sub-FSA	 1	(device	 1)

%_1
…
%_$

&_1
…
&_$

%_1
…
%_$

……

Set	N	of	inputs	
governing	
Device	
evolution

Set	1	of	inputs	
governing	
Device	
evolution

1_1
…
1_$

Device

In
pu
t	c

om
m
an
ds

O
ut
pu
t	
co
m
m
an
ds

Sub-FSA	N

Sub-FSA	 1

%_1
…
%_$

&_1
…
&_$

……

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 65

filtering commands before sending them to the blowers. For instance, if a “doCold” command
is required to be sent to a blower while the current state of the other blower is “Warm”, then
the command is inhibited.

/*---------------
/* INITIALIZATION
/*---------------
ON Init() IF true DO State(“doingWarm_1”) //Blower 1
ON Init() IF true DO State(“doingWarm_2”) //Blower 2

/*----------------------------
/* BLOWER 1 extended ECA rules
/*----------------------------

ON Input(“doWarm_1”) IF State(“doingWarm_1”) DO State(“doingWarm_1”)
ON Input(“doWarm_1”) IF State(“doingCold_1”) DO State(“doingWarm_1”)
ON Input(“doCold_1”) IF State(“doingCold_1”) DO State(“doingCold_1”)
ON Input(“doCold_1”) IF State(“doingWarm_1”) DO State(“doingCold_1”)

ON Input(“doWarm_1”) IF State(“doingWarm_1”) DO Output(“doWarm_1”)
ON Input(“doCold_1”) IF State(“doingCold_1”) DO Output(“doCold_1”)
ON Input(“doWarm_1”) IF State(“doingWarm_2”) DO Output(“doWarm_1”)
ON Input(“doCold_1”) IF State(“doingCold_2”) DO Output(“doCold_1”)

/*----------------------------
/* BLOWER 2 extended ECA rules
/*----------------------------

ON Input(“doWarm_2”) IF State(“doingWarm_2”) DO State(“doingWarm_2”)
ON Input(“doWarm_2”) IF State(“doingCold_2”) DO State(“doingWarm_2”)
ON Input(“doCold_2”) IF State(“doingCold_2”) DO State(“doingCold_2”)
ON Input(“doCold_2”) IF State(“doingWarm_2”) DO State(“doingCold_2”)

ON Input(“doWarm_2”) IF State(“doingWarm_2”) DO Output(“doWarm_2”)
ON Input(“doCold_2”) IF State(“doingCold_2”) DO Output(“doCold_2”)
ON Input(“doWarm_2”) IF State(“doingWarm_1”) DO Output(“doWarm_2”)
ON Input(“doCold_2”) IF State(“doingCold_1”) DO Output(“doCold_2”)

/*---
/* Example of priority rules (blower 2 prioritized)
/*---
ON Input(“doWarm_2”) IF State(“doingCold_1”) DO Output(“doWarm_2”)
ON Input(“doCold_2”) IF State(“doingWarm_1”) DO Output(“doCold_2”)

ON Input(“doWarm_1”) IF State(“doingCold_2”) DO Output(“doCold_1”)
ON Input(“doCold_1”) IF State(“doingWarm_2”) DO Output(“doWarm_1”)

By parsing extended ECA rules, one can incrementally build the custom ACM depicted in
Figure 40.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 66

Figure 40: Custom ACM from extended ECA rules

4.2.2.3 Validation tools and ACM component generation
Before instantiating an ACM into the AGG, some formal verifications (providing mathematical
proof of correctness) are needed to ensure its behavioural reliability. For this purpose, the Mealy
FSM built from Extended ECA rules is transformed into SCXML format further used as input
to NuSMV [24].

In a short-term roadmap, logical constrains specifications (e.g., two outputs are incompatible)
will be added. These logical constrains may also be described using extended ECA rules and
an equivalent Mealy FSM, called ACM observer. Contrary to ACM, ACM observer consumes
as inputs the inputs and outputs of ACM. Its output is either “OK” or “KO” indicating when
logical constrains are verified or not.

Both Mealy FSM feed NuSMV and then some formal properties can be verified using its model-
checker. For example, formal verification of the Safety property “ensures that something bad
(KO) will never happen”.

This formal verification approach is close to the one described in [25].
After the verification of the ACM logic, the custom ACM implementation is done through a
generic execution engine (see Figure 41). Our FSM execution engine is an event driven. Thus,
a generator must compute input events before triggering one FSM transition and generating the
corresponding outputs.
In ACM Enabler V1, the targeted platform is a Node-Red one.

Custom	ACM

Set	of	inputs	
governing	
blower	2	
evolution

Set	of	inputs	
governing	
blower	1	
evolution

!"#$%&_1
!")"*!_1

!"#$%&_2
!")"*!_2

!"#$%&_1
!")"*!_1

!"#$%&_2
!")"*!_2

Blower	
1

Blower	
2

Shared	physical	
process

In
pu
t	c

om
m
an
ds

O
ut
pu
t	
co
m
m
an
ds

doCold_1

doWarm_1	&	doCold_2doingCold

doWarm_1	&	doCold_2

doCold_1

doCold_1	&	doWarm_2 doingWarm

doCold_1	&	doWarm_2

doWarm_1

doingWarm’

doWarm_1	&	doWarm_2

doWarm_1	&	doWarm_2

doWarm_1

doWarm_1

doingCold’

doCold_1	&	doCold_2

doCold_1	&	doCold_2

doCold_1

doWarm_1

doCold_1	&	doW
arm

_2do
Co

ld
_1
	&
	d
oC
ol
d_
2

doCold_1do
W
ar
m
_1
	&
	do

Co
ld
_2

doCold_1

doCold_1	&	doW
arm

_2

doWarm_1

doCold_2

doCold_2doingCold

doCold_2

doCold_2
doWarm_2

doingWarm

doWarm_2

doWarm_2

doWarm_2

Sub-FSA	 2	(blower	2)

Sub-FSA	 1	(blower	1)

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 67

In future works, tools for testing FSM with their execution engine before deployment will be
developed to ensure that the logical constrains remain true independently from their
implementation. Then different generic execution engine policies may be tested to automatic
choose the most reliable one for one FSM and the corresponding custom ACM.

Figure 41: Execution engine for a Finite State Mealy Machine and custom ACM software component

In summary, the proposed approach for designing a custom ACM is depicted in Figure 42. First
extended ECA rules allow to specify an ACM logic. This set of rules are thus transformed into
a Mealy FSM. Other sets of ECA rules describe some constrains such as undesired ACM
inputs/outputs. They are then transformed into a second Mealy FSM. From both FSM, a Model
Checker allows to prove (or not) that constrains are validated.

Figure 42: Designing Safe and Reliable Custom Actuation Conflict Manager Workflow

 ACM Enabler V1 Illustration
In the first release of the ACM Enabler, an actuation conflict corresponds either to concurrent
commands applied on shared actuators (direct conflict) or to concurrent commands applied to
distinct actuators whose effects impact a shared physical environment (indirect conflict).

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 68

Figure 43: WIMAC meta-model V1

The main entities in the current WIMAC metamodel are the following (see Figure 43):

(1) SoftwareComponents –In V1, software components are black-box components. Thus,
actuation conflict management is solved externally, i.e., by instantiating ACM
components without modifying existing software components.

(2) ActionComponents are Software components controlling transducers that modify the
physical process, e.g., actuators,

(3) Physical Process corresponds to a bounded part of the physical environment, e.g.,
temperature in a room. In V1, the models of the physical processes of interest allow to
detect indirect conflicts inherent to ActionComponents.

Given this meta-model, a concrete implementation is illustrated in the sequel.

As presented in section 4.1.1, we consider two different applications whose purpose is to control
a shared light. The first application (App1) switches the light on when a presence is detected in
the room while the second application (App2) switches the light off when the TV is in use. Both
applications (Figure 44) act on the same device, i.e., the light. In this context, the lack of conflict
management may result in the light to blink perpetually.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 69

Figure 44: Two applications acting on the same device “Light”

Following the process described in 4.2.1, the associated WIMAC model, with an off-the-shelf
ACM instantiated, is depicted in Figure 45.

Figure 45: Actuation conflict identification and resolution

From the application model depicted in 4.1.1, there is no way to infer that both lights do actually
refer as explained in 4.2.1 (illustrated by Figure 35 and Figure 36) identified by an ID in the
model of the physical environment and “links” describes the fact that both lights interact with
each other in the physical process:

{
 "physical_processes": [{
 "id": "56c683e8.b67a81",
 "name": "PP_LightLivingRoom"
 }
],
 "links": [{
 "from_id": "1a0c80b8.1c9e9f", // Light#1
 "to_id": "56c683e8.b67a81" // Acts on this process
 }f, {
 "from_id": "57f66f91.3c12", // Light#2
 "to_id": "56c683e8.b67a81" // Acts on the same process
 }
]
}

This allows to identify a potential conflict, hence the instantiation of the ACM in front of the
lights in the WIMAC model. For this example, the ACM corresponds to an AND gate. The
resulting Node-Red application is depicted in Figure 46.

Figure 46: Generated application model with actuation conflict management

App1

App2

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 70

 Synthesis
In the sequel, we do evaluate how the proposed approach addresses the requirements defined
in Section 4.1.1 with respect to the use case requirements described in deliverables D2.1 and
D1.1.

R1 Accuracy

Modelling tool for a comprehensive
actuation system integrating models
of the physical environment and its
evolutions according to the
interactions with competing
applications.

Partially covered. ACM Enabler
V1 is a chain of tools with a step by
step design methodology. Enabler
will be enhanced for reusing of
custom ACM and for testing FSM
execution engine before
deployment.

R2 Usability

Shall integrate a GUI tool for
actuation modelling support, based
on simple and interpretable
modelling frameworks.

Ongoing. Large-scale Actuation
Conflict Management uses AGG
tool. This tool provides a simple yet
efficient GUI for instantiating off-
the-shelf ACMs into the complete
model of SIS from transformation
rules. Moreover, custom ACM
modelling can be achieved using a
user-friendly Extended ECA rules.

R3
Trustworthiness

(reliability)

Shall help identifying complex
environment

*tal actuation conflicts

Partially covered. ACM Enabler
V1 provides an actuation conflict
management considering indirect
conflicts that may occur through a
shared physical environment. The
environment model is simple in this
first release. Future work will
introduce more complex physical
environment models.

R4 Reusability

Shall permit the reusability of
solutions already designed for
similar cases

Partially covered. The current
actuation conflict management is
based on off-the-shelf ACMs. It
allows to modify, remove or add
new ACMs on the go. Future work
will introduce a knowledge base
used to store ACMs incremented
with semantic metadata, thereby
facilitating ACMs search through
semantic queries.

R5 Trustworthiness
(reliability)

Shall aid in the design of the
conceptual model of the conflict
controller (e.g., Formal test &
verification)

Partially covered. The formal
modelling framework underlying
ACMs is a finite state automaton.
Thereby, it can be validated thanks
to classical model-checker like
NuSMV.

R6 Trustworthiness
(reliability)

Shall provide tools for testing
conflicts controller through an
operational model (intended to
validate conflict resolution solutions
in an operational context)

Not yet available. This mainly
depends on WP3 behavioural drift
analysers used to detect unexpected
behaviours from observations in the
physical environment despite
actuation conflict management.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 71

R7 Trustworthiness
(reliability)

Shall manage actuation conflicts
despite black box modelled
components.

Available. ACM Enabler V1
manages actuation conflicts despite
black box components (see WIMAC
model V1).

R8 Adequacy

Conflicts resolution at run-time shall
be automated as much as possible.

Not yet available. ACM Enabler V1
automatically detects actuation
conflicts before deployment and
provides developers tools to solve it.

R9
Trustworthiness

(safety)

Shall provide actuation conflicts
alerts during the deployment on
ENACT platform.

Not yet available. ACM Enabler V1
automatically detects actuation
conflicts before deployment and
provides developers tools to solve it.

R10
Monitoring &

trustworthiness
(safety)

Shall continuously monitor
behavioural drift to assess deployed
solutions.

Not yet available. This is part of the
roadmap with UDE.

R11 Monitoring &
traceability

Shall trig a new development cycle
from the quantitative behavioural
drift assessment value/threshold.

Not yet available. It is planned in
the roadmap and requires WP3 and
WP2 Tools to be merged to the
common ENACT DevOps platform.

R12 Scalability

Shall provide tools allowing to
manage hundreds of sensors and
actuators, thus tens of actuation
systems.

Partially covered. Large scale
Actuation Conflict Detection and
Solving is one of the focus of the
ACM Enabler V1. Further tests are
planned in the roadmap.

R13 Scope

Actuation conflicts management
tools shall support several targets
ranging from IoT, Edge to Cloud.

Partially covered. Leveraging on
GeneSIS and WIMAC models, the
actuation conflict management is
compatible with several targets
ranging from IoT, Edge to Cloud. In
V1, ACMs are instantiated as nodes
in Node-Red middleware embedded
in a Docker container running on
Raspberry PI.

R14 Integration

Actuation conflicts management
tools shall support different kind of
frameworks (GeneSIS, ThingML,
Node-Red) and middleware
(SMOOL, SOFIA2, etc.).

Partially covered. In V1, ACMs are
instantiated as nodes in Node-Red
middleware embedded in a Docker
container running on Raspberry PI.
ACMs are deployed thanks to
GeneSIS. SMOOL and FIWARE
middleware will be addressed in a
future version of the tool.

DO-3.3.1

DO-3.3.4

INDRA, Rail Use
Case

The orders must be prioritized Available. In V1, ACMs can be
designed to prioritize orders for
actuation system.

DO-3.3.2 INDRA, Rail Use
Case

The Context Monitoring and
Actuation Conflict Management
Enabler and the Monitoring must
have a GUI.

Not yet available. It requires WP2
and WP3 tools to be integrated.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 72

DO-3.3.3 INDRA, Rail Use
Case

Low delays of alerting to the rail
operator in order to avoid critical
accidents

Available. In V1, ACMs can be
designed as Finite state machine
(FSM), allowing response time to
be kept within acceptable delays.

DO-3.3.6 TECNALIA,
Smart Building
use case

The Conflicts Enabler should be
able to identify and avoid conflicts
in colliding commands sent to same
actuator by two IoT apps.

Available. In V1, direct actuation
conflicts are detected and solved.

DO-3.3.7 TECNALIA,
Smart Building
use case

The Conflicts Enabler should be
able to identify and avoid conflicts
in commands sent to actuators
impacting the same physical
variable, by two IoT apps at the
same time.

Available. In V1, indirect actuation
conflicts are managed, considering
counterproductive effects that may
be produced by different actuators
sharing a common environment.

Work in progress is focused on evaluating ACM Enabler V1 performances on use cases
provided by TECNALIA.

Following this status, several improvements are planned in the roadmap as follows:

(1) Possible WIMAC evolutions are currently being investigated. A first evolution consists
in considering grey-box component models describing interactions between their input
and output ports. A second envisioned evolution consists in introducing analytical
models of the physical environment based, for instance, on differential equations.

(2) For the time being, application and deployment models’ part of WIMAC are flattened
leading any hierarchical structure to get lost. A possible evolution would consist in
conserving existing hierarchical structures upon application and deployment model
integration into WIMAC.

(3) Off-the-shelf ACMs are, for the time being, merely stored into a repository. A possible
evolution consists in incrementing ACMs with semantic annotations relying on a
common ontology and store the result into a Knowledge Base (KB). Doing so, one can
leverage semantic web tools like SPARQL [26] (SPARQL Protocol and RDF Query
Language) for searching relevant ACMs in the KB.

(4) Finally, custom ACMs formal verifications can be complemented with tests on the
concrete ACMs. For instance, Discrete Event System Specification (DEVS) [27]
models of the ACM components would allow to test if all the validated properties are
preserved on the concrete ACM components.

5 Test and Simulation for SIS
 Overall presentation of the Enabler

Within this section we cover the Test and Simulation ENACT enabler for SIS. Given the fact
that this work has been taken over by Beawre as the continuation of work of CA Technologies,
former partner of ENACT, and the fact that the partner recently joined the project, we will be
covering the motivation and technical presentation based on the current scope of work.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 73

 Motivation
Software testing is a crucial step of any software development process, even more so in the
DevOps software development cycle. In IoT oriented application development however, having
access to a production-like environment that reproduces the same condition where a piece of
software would run is usually tricky or close to being an impossible task. Even more so in IoT
environments, developers need to test their applications to ensure trustworthiness factors are
met and well concluded.

In IoT based applications, access to devices, sensors and actuators with a specific environment
where they will be deployed might not be trivial, or it can be limited due to many factors.
Networks of physical deployed devices are typically devoted to production software, and testing
applications on top of those networks might involve additional testing software, which might
affect overall performance —and hence the revenue generated by the system— of the devices
if, for instance, they need to be stopped to load the new versions of applications.

In such scenarios, software simulators proved to be valuable in easing the requirements
completion, providing developers with testing environment to —at least— start and execute
testing of their applications. When it comes to IoT application testing, simulation tools allow
developers to have an initial testing platform that enables them to develop their applications
before putting them into a production IoT devices network. This way, the impact of the
application development on IoT systems is minimized. The shortcoming of the simulators is
apparent when the application is relying on externally deployed or distributed network of
sensors and/or actuators measuring providing input to the core of the application where the
actuators are necessary for the sole application functioning. These scenarios are covered by IoT
testbeds.

IoT testbeds also play a relevant role when it comes to testing applications. Testbeds offer a
deployed network of IoT devices. Developers can upload their applications onto these networks
and test their software in a real environment. IoT-Lab 16 and SmartSantander 17 are good
examples of IoT testbeds. Testbeds often have a predefined fix configuration and architecture.
They are also usually shared with other users, which can be a problem when it comes to
measuring application performance. Hence, the main drawbacks of the testbed approach can
make simulators more attractive, since they can provide a more custom environment and more
control over it. Furthermore, simulators avoid the need of having a physical network of devices.

In the recent years, both academia and the commercial market offered solutions in the IoT
simulation field. Although the area is the same, their approach is entirely different. Academic
solutions implement cutting-edge technology in the form of proofs-of-concept, which are
usually not ready for production systems demands. Furthermore, commercial solutions focus
on producing a stable and flawless solution, even though the technology behind might not be at
the cutting-edge state-of-the-art.

All of the above showcases that there is a need for a complete set of test and simulation solutions
for IoT, such that the system can be tested based on the predefined scenarios with use of sensors
and actuators data which does make sense in the given scenario but also stresses the boundaries
of the scenario in order to detect potential problems. In Table 6, the scope of common IoT
testing is listed. ENACT Test and Simulation Enabler addresses all of the categories apart from

16 https://www.iot-lab.info/
17 http://www.smartsantander.eu/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 74

the ones bounded to the components and communication testing which are purely connected to
the hardware testing and as such are considered out of the scope of purpose.

Test Categories Sample Test Conditions
Components Validation • Device Hardware

• Embedded Software
• Cloud infrastructure
• Network Connectivity
• Third-party software
• Sensor Testing
• Command Testing
• Data format testing
• Robustness Testing
• Safety testing

Function Validation • Basic device Testing
• Testing between IOT devices
• Error Handling
• Valid Calculation

Conditioning Validation • Manual Conditioning
• Automated Conditioning
• Conditioning profiles

Performance Validation • Data transmit Frequency
• Multiple request handing
• Synchronization
• Interrupt testing
• Device performance
• Consistency validation

Security and Data Validation • Validate data packets
• Verify data loses or corrupt packets
• Data encryption/decryption
• Data values
• Users Roles and Responsibility & its Usage

Pattern

Gateway Validation • Cloud interface testing
• Device to cloud protocol testing
• Latency testing

Analytics Validation • Sensor data analytics checking
• IOT system operational analytics
• System filter analytics
• Rules verification

Communication Validation • Interoperability
• M2M or Device to Device
• Broadcast testing
• Interrupt Testing

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 75

• Protocol

Table 6. Example test condition of IoT testing scopes

 Overall approach to Test and Simulation
ENACT approach to Test and Simulation is trying to fill in the gap of how the application of
distributed of IoT testing is usually performed. Based on the conclusions of challenges of Test
and Simulation described in D2.1 section 5.1.1, the aim of the enabler is to provide means to
test the trustworthiness of the IoT application by providing believable, constrained and reason
backed sensors and actuators feedback data into the application. We believe the approach we
will explain in detail in section 5.2 addresses main challenges and provides a solid baseline for
the extension on-top of the enabler to advance the simulation and test capabilities.

Contrary to initial direction of the enabler, the current approach is to be agnostic to the data
stream model format and cover the range of the scenarios where the major player in the space
could be used. The approach dictates that the real environment communication traffic can be
caught and modelled in order to produce stable variant stream of data for the application that in
effect can be used for application testing.

Table 7 showcase the scope of the testing capabilities ENACT Test and Simulation tool can
cover.

Table 7. Scope of the ENACT Test and Simulation Capabilities

By allowing wide range of testing types, sensors and actuators, traffic models can be used by
users to compose testing scenarios where the range of tests of the most common IoT testing
problem are performed. For instance, one of such examples is IoT scale where the specific
behaviour of the modelled traffic from the device can playback faulty data testing rigidity and
composition of the application at faulty scenarios.
Range of common pre-recorded simulated devices will be released with the enabler in order to
ease the adoption.

 Technical presentation and highlights
Within this section we will introduce the two main categories that compose the Test and
Simulation Enabler. Figure 47 depicts modules composing the tool as well as the inputs and
outputs to which the enabler is targeted.

Actual Devices refer to a live system device where the traffic can be captured but also testbeds
or existing virtual devices to which the tool can be pointed. Ideally, these are the devices that
represent the stable state of the required environment. If such devices are not available, the
Recording Storage of devices will be available to the developers in order to choose from the

IOT elements
Testing Types

Sensor Application Network

Functional Testing True True False
Usability Testing True True False
Security Testing True True True
Performance Testing False True True
Compatibility Testing True True False
Services Testing False True True
Operational Testing True True False

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 76

most common devices used in IoT environments. The set of the most common devices is
determined by the project use cases.

IoT Application refers to the codebase of the application which can be instantiated on the test
server and which expects the inputs from the devices in order to perform actions.

Figure 47. ENACT Test and Simulation Enabler architecture.

From a high-level perspective, Testing and Simulation enabler is envisioned as a package that
comprises two main differentiated modules.

First module handles the Simulation itself, extracting the behaviour of actual devices and
modelling it to create virtual devices that later on will be played back. Architectural information
of the system to be simulated can be passed as input so the simulator will know what devices
need to point to in order to sniff its traces and extract its behaviour. This is carried from the
GeneSIS model and is graphically represented in the tool in order to ease selection of what
devices should be modelled by the simulator.

In parallel, the second main module will manage Events Generation. This module will provide
most of the value related to trustworthiness. It can simulate both malicious and non-malicious
events that could modify the normal operation of applications or systems. It enables developers
to anticipate potential issues and allow them to build a more resilient and robust applications,
as well as to anticipate security problems regarding cyberattacks.
During simulation, developers are able to monitor the simulation and to evaluate the results for
testing once the simulation is finished. To that matter, developers can upload a description of
the alerts and tests to assess during the simulation. In the next section we will introduce the
immediate plans for the tool as well as the scope of the final deliverable.

 Future Plans
This section covers the future plans for the enabler, covering the base plan as well as the specific
points of innovation which ENACT is aiming to deliver in the enabler.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 77

The baseline aim for the project is to deliver exploitation ready tools for testing and simulating
IoT environments, to this extend the enabler will be released open-source under ETL license
with Eclipse Foundation back up in order to reach the appropriate communities. The tool is
deployable though container which encapsulates SaaS application for IoT Test and simulation.
The UI of the Test and Simulation tool is coherent with the rest of the tools of the ENACT
framework. On-top of the planned schedule of work set of innovation has been identified and
it currently undergoing definition and implementation, these are:

• Multi device recording – in order to represent the state of the application, the testing
should consist of coherent information’s across the sensors, such that the data sent to
the application is coherent and represents actual state of the recorded environment. To
address this, a multi-device recording capabilities are planned that will allow capturing
the data streams from multiple devices at the same time, annotating it with the
timestamp so the analysis of dependencies can be performed. This will also enable the
multi-device model to be formed capturing the dependencies between the environment.

• Risk analysis extension – assessing likelihood and impact of a risky situation is often
subjective in nature or it does represent the state of the knowledge of the actor involved
in the risk analysis process. By allowing the expressed technical risky situation to be
simulated, we want to provide means of assurance of appropriate level of likelihood and
impact on the IoT application. We find the concept to be extremely powerful with great
potential to be exploited by the communities and commercially. Risky situations are
meant to be matched to the testing scenarios and the impact and likelihood analysis
report will be presented to the risk analysis user for further analysis and validation. This
is solely possible due to the shared architectural model provided by GeneSIS.

• Model Variance control – the data streams models are based on the actual recording
of the devices, such as TCP or Bluetooth traffic. Model Variance Control will be able
to produce new models based on the existing one with the variance of output specified
by the actor using the enabler. This will allow for mimicking edge case scenarios as
well as emit fault or attack like events to the application.

• Event Generator for specific purposes – two main purposes are considered within the
ENACT Test and simulation tool for automatic variance introduction as the aim is to
produce specific scenarios against which the application can be tested, these are:

o Cyberattack events – where the sole purpose is to take control of the
application component in order to extract the data.

o Non-malicious Anomalies and Faults – where the aim is to produce faulty state
of the application making it unavailable or behaving in an unprecedented way.

• Recorder Interoperability – CA was intending to use Knowthings.io as a backbone of
the Test and Simulation tool. The main major step is to support multiple recording
streams in order to interoperate between the data stream sources and enhance recording
capabilities. For the scope of the project, we aim to support three traffic recorders, these
are:

o Knowthinks.io legacy / WireShark – the project is not currently active, but the
project is directly interoperable with WireShark type of TCP output capture.
ENACT Test and Simulation will support both formats.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 78

o iFogSim18 – is a toolkit for Modelling and Simulation of Resource Management
Techniques in Internet of Things, Edge and Fog Computing Environments.
Interoperability with iFogSim would allow us to simulate the environments
which are extremely difficult to record, such as sensors deployed in extreme
scenarios

o MtM IoT – commercial solution of Montimage, newly joined as a partner in the
ENACT consortium, capable of distributed IoT application and systems
monitoring and traffic analysis, it would aim to provide a replacement for
responsibilities of Knowhtings.io

Initial version covering the first approach of the mentioned capabilities is planned to be release
in M21 of the project.

 Synthesis
In the following section, it showcased how our approach addresses the requirements defined in
Section 5.2.1 of deliverable D2.1 where two use cases expressed their requirements that need
to be covered by the enabler. In the table below Intelligent Transportation System use case, is
referred to as UC1, and the Digital Health use case, referred to as UC2.

ReqID Requirement Description Coverage
UC1
R1

Scalability The simulator should easily scale the
number of components that are involved
in the simulation.

Covered by the approach where the
data stream model recording, or
event model can be indefinitely
replicated and targeted against the
application in order to simulate the
system at scale.

UC1
R2

Component modelling The simulator should model virtual
devices that reproduce the behaviour of
real devices.

The approach is to record the IO of
the component which in effect can
reproduce the behaviour.

UC1
R3

Simulation of multiple
sensor events

The simulator should generate signals
from multiple types of sensors:

- Accelerometer: ADXL362Z,
SPI

- GNSS: A2035H, UART
- XBEE radio for RSSI:

Xbee868LP, SPI
- RFID: SparkFun Simultaneous

RFID Reader - M6E Nano,
UART

- Battery monitoring (load
current, battery voltage)-analog
voltage on ADC inputs of energy
harvesting module internal in
EDI node (controller).

- Analog measurement circuits,
including current-voltage
converter and instrumentation

The enabler is capable of covering
TCP and Low Power Bluetooth
traffic, enabling the recorder
interoperability allows for an easy
extension of the data streams
models to be captured from other
type of communication.

18 Harshit Gupta, Amir Vahid Dastjerdi , Soumya K. Ghosh, and Rajkumar Buyya, iFogSim: A Toolkit for Modeling and Simulation of
Resource Management Techniques in Internet of Things, Edge and Fog Computing Environments, Software: Practice and Experience (SPE),
Volume 47, Issue 9, Pages: 1275-1296, ISSN: 0038-0644, Wiley Press, New York, USA, September 2017.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 79

amplifier circuits is being
developed by BOSC. Particular
IC is not chosen yet.

UC1
R4

Simulation of multiple
communication
protocols

The simulator should simulate several
communication protocols:

- IEEE 802.15.4 ZigBee
- IEEE 802.3

To be implemented.

UC1
R5

Simulation of dynamic
geographical position

The simulator should simulate changes of
geographical position of the system,
taking into account possible mobile
network disconnections, and other
possible situations derived of the position
changes of the system physical platform.

Covered by the approach as this is
the model of the sensor data. It is
also covered by the event generator
which aims to introduce the faulty
scenario into the system.

UC1
R6

Failures simulation The simulator should simulate the
possible failures of the system. Failures
can be related with networking issues,
device disconnection, or fake readings.

As above.

UC1
R7

Attack simulation The simulator should generate possible
attacks to the system. Attacks include data
poisoning, device disconnection, or
device hijacking.

Event generation described in the
section 5.3 Future plans aims to
address exactly that requirement.
Current status: under development.

UC2
R1

Scalability The simulator should easily scale the
number of components that are involved
in the simulation.

As per UC1 R1.

UC2
R3

Simulation of multiple
sensor events

The simulator should generate signals
from multiple types of sensors listed in
D1.1

Multi device recording capabilities
described in the section 5.3 Future
plans aims to address exactly that
requirement. Current status: under
development.

UC2
R4

Simulation of multiple
communication
protocols

The simulator should simulate several
communication protocols as described in
D1.1

Interoperability ensures such
capabilities. For the scope of the
project, TCP and Bluetooth will be
covered as a baseline. Use cases
will be also assisted to record the
other type of protocols with the
existing data stream recorders.

UC2
R6

Failures simulation The simulator should simulate the
possible failures of the system. Failures
can be related with networking issues,
device disconnection, or fake readings.

As per UC1 R5

UC2
R7

Attack simulation The simulator should generate possible
attacks to the system. Attacks include data
poisoning, device disconnection, or
device hijacking.

As per UC1 R7

UC2
R8

Real environment
interoperability

The simulation should be able to be
plugged into a real system so that it can
interact as a real part of it.

Test and Simulator Enabler is
capable of sending the data to any
application it is pointed to,
regardless of it being instantiated
during the test scenario run pointed
to already existing application.

UC2
R9

External actors
simulation

The simulation should simulate the
interaction of external actors. An external
actor can be a human being or another
system.

Covered by the approach. Currently
in the development phase.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 80

6 Conclusion
WP2 aims at providing enablers for the development and deployment of SIS. WP2 will provide
enablers with capabilities to (i) manage risk, (ii) orchestrate and deploy software components,
(iii) identify, analyse and manage actuation conflict, and (iv) test and simulate provided
services.

Figure 48. WP2 Enablers for the Dev part of the DevOps cycle

Based on the conceptual designs described in D2.1 we revised the conceptual designs in D2.2
and provided prototypical implementations for all WP2 enablers, except the test and simulation
enabler which is ongoing. These first versions of the enablers will serve as a baseline for the
final enablers delivery in D2.3. From now, a major focus will be on interacting and supporting
case study partners and to account for and evolve the languages and tools accordingly.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 81

Appendix A

1 Risk Management -- User guide
In the following section we summarize the main instruction to run and configure the ENACT
Risk Management tool. The code is open source and available under:
https://gitlab.com/enact/risk-management

 Installation
The tool follows the SaaS model and hence needs to have a prerequisite of database available
to in order to start it. Currently supported database is MSSQL version 2014 onwards.

The typical scenario of run would involve restoring the database schema with running the
docker container holding the application logic and API’s.

 Database setup

You can find the database schema dump under root of the repository.

1. Copy the database schema to your local drive
wget -L https://gitlab.com/enact/risk-
management/database_schema.sql

2. Restore the database schema to the database

Sqlcmd -U <user_name> -i
<file_location>/database_schema.sql

 Run the docker container with Risk Management tool

1. Download the DockerFile:

wget -L https://gitlab.com/enact/risk-
management/raw/master/Dockerfile

2. In the repository where you downloaded the DockerFile, build your image:

docker -t risk-management build .

3. Run the docker container (Depending on how you plan to use Risk Management tool,
remember to open the proper ports, and pass the database connection string
cf. https://docs.docker.com/engine/reference/run/). Please note that the database server should
be available to docker image.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 82

docker run --network=”host” -e DbConnection=”
Server=sqlserver;Database=xxxx;User Id=xx;Password=xxx;”
-p 8080:8080 risk-management

4. Access the Risk Management web interface

Once Risk Management tool has started, you can access the web interface at the following address:
	
http://localhost:8080

2 GeneSIS – User guide
In the following section we summarize the main instructions to install, configure, start and use
GeneSIS. More details can be found in the GeneSIS GitLab repository:
https://gitlab.com/enact/GeneSIS

 Installation
The main README file at the root of the GeneSIS Gitlab repository details how to setup and
start GeneSIS from: (i) Git, (ii) the GeneSIS official Docker image, and (iii) the Docker Build
file. In the following we provide an overview of these instructions.

 Pre-requisite:

• Node.js v7
• npm v4
• Java v8

In order to deploy docker containers on a host, please remember to turn on the Docker Remote API on
the target host. On Raspberry Pi, you can install docker using:

curl -sSL https://get.docker.com | sh
	
and configure it as follows:

• Create a file called:

/etc/systemd/system/docker.service.d/startup_options.conf

• Add to the file:

/etc/systemd/system/docker.service.d/override.conf
[Service]
ExecStart=

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 83

ExecStart=/usr/bin/dockerd -H tcp://0.0.0.0:2376 -H
unix:///var/run/docker.sock

• Reload the unit files:

sudo systemctl daemon-reload

• Restart Dockerd:

sudo systemctl restart docker.service

 From git:
If you want to run the latest code from git, here is how to get started:

1. Clone the code:

git clone https://gitlab.com/enact/GeneSIS.git
cd GeneSIS

2. Install the dependencies:

npm install

3. Run GeneSIS:

npm start

4. Access the GeneSIS web interface

Once GeneSIS started, you can access the GeneSIS web interface at the following address:
	
http://your_pi:8880

 From DockerFile:
You may build your own Docker image of GeneSIS by using our DockerFile. This image will run the
latest code from git.

5. Download the DockerFile:

wget -L
https://gitlab.com/enact/GeneSIS/raw/master/Dockerfiles/D
ockerfile

6. In the repository where you downloaded the DockerFile, build your image:

docker -t genesis build .

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 84

7. Run the docker container (Depending on how you plan to use GeneSIS, remember to open the
proper ports, cf. https://docs.docker.com/engine/reference/run/).

docker run -p 8880:8880 genesis

8. Access the GeneSIS web interface

Once GeneSIS started, you can access the GeneSIS web interface at the following address:
	
http://your_pi:8880

 From the public Docker image:

1. Pull the image:

docker pull nicolasferry/genesis

2. Run the docker container (Depending on how you plan to use GeneSIS, remember to open the
proper ports, cf. https://docs.docker.com/engine/reference/run/).7

docker run -p 8880:8880 genesis

3. Access the GeneSIS web interface

Once GeneSIS started, you can access the GeneSIS web interface at the following address:

http://your_pi:8880

 Tutorials and examples
• A set of examples of deployment models:

https://gitlab.com/enact/GeneSIS/tree/master/docs/examples
• A set of six tutorials gradually explaining how to use GeneSIS is available at

https://gitlab.com/enact/GeneSIS/tree/master/docs/tutorial and include instructions for:
• Deploying a single instance of Node-RED.
• Deploying a single ThingML Component.
• Deploying two instances Node-RED.
• Deploying via Ansible.
• Deploying via SSH.
• Deploying multiple nodes including a node requiring a deployment agent.

3 Actuation conflict manager – User guide
In the following section we summarize the main instructions to install, configure, start and use
Actuation Conflict Manager. More details can be found in the Actuation Conflict Manager
GitLab repository: https://gitlab.com/enact/actuation_conflict_manager

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 85

 Installation
The main README file at the root of the Actuation Conflict Manager Gitlab repository details
how to setup and start Actuation Conflict Manager from Git. In the following we provide an
overview of these instructions.

 Pre-requisite:

• Node.js(tested with 8.11.2 and 10.15.1)
• Npm (tested with 5.6.0 and 6.4.1)
• Java 8
• rethinkdb https://www.rethinkdb.com/docs/install/

 Installation from git:
If you want to run the latest code from git, here is how to get started:

1. Clone the code:

git clone https://gitlab.com/enact/actuation_conflict_manager.git
cd actuation_conflict_manager

2. Install the dependencies:

cd acm-app
npm install
cd ../acm-repository-gateway
npm install

 Run from git sources:

1. Start rethink database:

./rethinkdb.exe

2. Start AGG Gateway server

cd acm-app\agg
java -jar agg-gateway-0.1.0.jar -cp agg_V21_classes.jar

3. Start actuation conflict manager application:

cd acm-app
npm start

Once Actuation Conflict Manager started, you can access the Actuation Conflict Manager web
interface at the following address:
	
http://localhost:3333

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 86

 Examples and tutorials:	
A set of examples/tutorials to use Actuation Conflict Manager is available at the following
address:
https://gitlab.com/enact/actuation_conflict_manager/tree/master/docs/examples

• Using ACM with Conflict with a single Node-RED instance

• Using ACM with Conflict with two Node-RED instances

• Using ACM with with a GeneSiS deployment model

4 Test and simulation – User guide
References
1. Lund, M.S., B. Solhaug, and K. Stølen, Model-driven risk analysis: the CORAS approach.

2010: Springer Science & Business Media.
2. Ferry, N., et al., GeneSIS: Continuous Orchestration and Deployment of Smart IoT Systems, in

IEEE Computer Society Signature Conference on Computers, Software and Applications
(COMPSAC). 2019, IEEE.

3. Morin, B. and N. Ferry, Model-based, Platform-independent Logging for Heterogeneous
Targets, in MODELS. 2019, IEEE/ACM.

4. Nguyen., P.H., et al., A Systematic Mapping Study of Deployment and Orchestration
Approaches for IoT, in Proceedings of the 4th International Conference on Internet of Things,
Big Data and Security - Volume 1: IoTBDS. 2019. p. 69-82.

5. Nguyen., P.H., et al., Advances in deployment and orchestration approaches for IoT - A
systematic review, in The 3rd IEEE International Congress on Internet of Things. 2019, IEEE.

6. Nguyen, P.H., et al., The preliminary results of a mapping study of deployment and
orchestration for IoT, in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing. 2019, ACM: Limassol, Cyprus. p. 2040-2043.

7. Fleurey, F. and B. Morin. ThingML: A Generative Approach to Engineer Heterogeneous and
Distributed Systems. in 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW 2017), Gothenburg, Sweden, 5-7 April 2017. 2017.

8. Morin, B., et al. A Generative Middleware for Heterogeneous and Distributed Services. in
2016 19th International ACM SIGSOFT Symposium on Component-Based Software
Engineering (CBSE). 2016.

9. Dearie, A. Software deployment, past, present and future. in Future of Software Engineering,
2007. FOSE'07. 2007. IEEE.

10. Bergmayr, A., et al., A Systematic Review of Cloud Modeling Languages. ACM Computing
Surveys (CSUR), 2018. 51(1): p. 22.

11. Atkinson, C. and T. Kühne, Rearchitecting the UML infrastructure. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 2002. 12(4): p. 290-321.

12. Ferry, N., et al. Towards Meta-adaptation of Dynamic Adaptive Systems with Models@
Runtime. in Proceedings of the 5th International Conference on Model-Driven Engineering
and Software Development, Port, Portugal, February 19-21, 2017. 2017.

13. Blair, G., N. Bencomo, and R.B. France, Models@ run. time. Computer, 2009. 42(10): p. 22-
27.

14. O’Leary, N. and D. Conway-Jones, Node red-a visual tool for wiring the internet of things.
Retrieved July, 2017. 4: p. 2017.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D2.2

 Public Final version 1.0, 30/06/2019 87

15. Harrand, N., et al. Thingml: a language and code generation framework for heterogeneous
targets. in Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. 2016. ACM.

16. Schmidt, D.C., Model-driven engineering. COMPUTER-IEEE COMPUTER SOCIETY-,
2006. 39(2): p. 25.

17. Brambilla, M., J. Cabot, and M. Wimmer, Model-driven software engineering in practice.
Synthesis Lectures on Software Engineering, 2012. 1(1): p. 1-182.

18. Kleppe, A.G., et al., MDA explained: the model driven architecture: practice and promise.
2003: Addison-Wesley Professional.

19. Morin, B., N. Harrand, and F. Fleurey, Model-based software engineering to tame the IoT
jungle. IEEE Software, 2017. 34(1): p. 30-36.

20. Eugster, P.T., et al., The many faces of publish/subscribe. ACM computing surveys (CSUR),
2003. 35(2): p. 114-131.

21. Bencomo, N., et al., Models@ run. time: foundations, applications, and roadmaps. Vol. 8378.
2014: Springer.

22. Noguero, A., A. Rego, and S. Schuster, Towards a Smart Applications Development
Framework. Social Media and Publicity. 27.

23. Handbook of Model Checking. 2018, Springer.
24. Chan, W., et al., Model checking large software specifications. IEEE Transactions on

Software Engineering, 1998. 24(7): p. 498-520.
25. Ressouche, A., J.-Y. Tigli, and O. Carrillo. Toward Validated Composition in Component-

Based Adaptive Middleware. 2011. Berlin, Heidelberg: Springer Berlin Heidelberg.
26. Hartig, O., Foundations of RDF* and SPARQL* : (An Alternative Approach to Statement-

Level Metadata in RDF), in AMW 2017 11th Alberto Mendelzon International Workshop on
Foundations of Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017., D.S.
Juan Reutter, Editor. 2017, Juan Reutter, Divesh Srivastava.

27. Zeigler, B.P., T.G. Kim, and H. Praehofer, Theory of Modeling and Simulation. 2000:
Academic Press, Inc. 510.

