

Grant Agreement N° 780351

Copyright © 2018 by the ENACT consortium – All rights reserved.

The research leading to these results has received funding from the European Community's H2020
Programme under grant agreement n° 780351 (ENACT).

Title: Requirements and conceptual design of techniques and methods for
trustworthy & agile operation of smart IoT systems

Authors: Haroon Ahmed (CA), Nicolas Ferry (SINTEF), Smrati Gupta (CA),
Stéphane Lavirotte (CNRS), Andreas Metzger (UDE), Victor Muntés
(CA), Phu NGuyen (SINTEF), Alexander Palm (UDE), Andreas Reiss
(CA), Marc Solé (CA), Jean-Yves Tigli (CNRS)

Editors: Stéphane Lavirotte (CNRS), Jean-Yves Tigli (CNRS)

Reviewers: Anne Gallon (Evidian), Eider Iturbe Zamalloa (Tecnalia)

Identifier: Deliverable # D3.1 v1.5

Nature: Report

Date: 31 October 2018

Status: Delivered

Diss. level: Public

Executive Summary

This deliverable provides an overview of the state-of-the-art mechanisms for the operation of IoT systems.
In addition, it will characterize the requirements to be considered and provide an initial design of the
solutions developed in WP3.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 2

Members of the ENACT consortium:

SINTEF AS Norway

CA Technologies Development Spain S.A. Spain

EVIDIAN SA France

INDRA Sistemas SA Spain

Fundacion Tecnalia Research & Innovation Spain

TellU AS Norway

Centre National de la Recherche Scientifique France

Universitaet Duisburg-Essen Germany

Istituto per Servizi di Ricovero e Assistenza agli Anziani Italy

Baltic Open Solution Center Latvia

Elektronikas un Datorzinatnu Instituts Latvia

Revision history
Date Version Author Comments
01 March Initial Stéphane Lavirotte Outline and summaries
12 April 0.1 Jean-Yves Tigli Outline and table of content
25 May 0.2 Andreas Metzger Second release of table of content (partners

validated)
27 July 0.3 Jean-Yves Tigli Merging each partners’ contributions, now

working on the same document
14 September 0.4 Marc Solé Section 4
19 September 0.5 Nicolas Ferry, Phu

NGuyen
Section 5.1

19 September 1.0 Stéphane Lavirotte Complete version of document with
formatting and style modifications.
Comments added to partners’ sections for
modifications

24 September 1.0 Andreas Metzger Additions to Section 1
02 October 1.0 Nicolas Ferry Review of the whole document
04 October 1.1 Nicolas Ferry, Stéphane

Lavirotte, Andreas
Metzger, Phu Nguyen,
Jean-Yves Tigli

Addressing comments and modifications
requests

05 October 1.2 Stéphane Lavirotte,
Jean-Yves Tigli

Revision for internal review

17 October 1.3 Anne Gallon, Eider
Iturbe Zamalloa

Comments and modifications added by
reviewers

24 October 1.4 Nicolas Ferry, Stéphane
Lavirotte, Andreas
Metzger, Phu NGuyen,
Alexander Palm, Marc
Solé, Jean-Yves Tigli

Corrections after internal review

31 October 1.5 Stéphane Lavirotte,
Jean-Yves Tigli

Final release of the deliverable

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 3

Contents
CONTENTS ... 3

1 INTRODUCTION .. 5

1.1 CONTEXT AND OBJECTIVES .. 5
1.2 ACHIEVEMENTS ... 7
1.3 STRUCTURE OF THE DOCUMENT ... 7

2 ONLINE LEARNING FOR ADAPTATION SELF-IMPROVEMENT OF SMART IOT SYSTEMS 8

2.1 STATE-OF-THE-ART ON ONLINE LEARNING ... 8
2.1.1 Reinforcement Learning ... 8
2.1.2 Case-based Reasoning.. 10
2.1.3 Search-based and Multi-Agent Learning .. 10

2.2 REQUIREMENTS FOR ONLINE LEARNING ENABLER .. 11
2.3 CONCEPTUAL DESIGN OF ONLINE LEARNING ENABLER ... 12

3 BEHAVIOURAL DRIFT ANALYSIS OF SMART IOT SYSTEMS ... 14

3.1 STATE-OF-THE-ART ON BEHAVIOURAL DRIFT ANALYSIS OF SMART IOT SYSTEMS 15
3.1.1 Considered anomalies .. 16
3.1.2 Anomaly detection problem .. 17
3.1.3 Static modelling approaches .. 18
3.1.4 Dynamic modelling approaches .. 21

3.2 REQUIREMENTS FOR BEHAVIOURAL DRIFT ANALYSIS ENABLER ... 21
3.3 CONCEPTUAL DESIGN OF BEHAVIOURAL DRIFT ANALYSIS ENABLER .. 23

3.3.1 Stochastic behavioural drift observer modelling framework ... 23
3.3.2 Behavioural drift observer synthesizer ... 24
3.3.3 Deterministic Model Learning ... 24

4 ROOT-CAUSE ANALYSIS FOR SMART IOT SYSTEMS ... 24

4.1 STATE-OF-THE-ART ON ROOT-CAUSE ANALYSIS .. 24
4.1.1 General framework for Root-cause analysis ... 25
4.1.2 RCA for IoT .. 27

4.2 REQUIREMENTS FOR ROOT-CAUSE ANALYSIS ENABLER ... 28
4.3 CONCEPTUAL DESIGN OF ROOT-CAUSE ANALYSIS ENABLER .. 29

5 SUPPORT AND INTERRELATIONSHIPS AMONG TECHNIQUES FOR AGILE OPERATION OF
SMART IOT SYSTEMS ... 30

5.1 ADAPTATION ENACTMENT AS SUPPORT FOR SELF-ADAPTATION ... 30
5.1.1 State-of-the-art on Adaptation enactment .. 31
5.1.2 Requirements for Adaptation enactment ... 33
5.1.3 Conceptual design of Adaptation enactment .. 34

5.2 BEHAVIOURAL DRIFT ANALYSIS AS INPUT FOR ONLINE LEARNING .. 38
5.3 ROOT-CAUSE ANALYSIS AS INPUT FOR ONLINE LEARNING .. 39
5.4 INTERRELATIONSHIPS BETWEEN ROOT-CAUSE ANALYSIS AND BEHAVIOURAL DRIFT ANALYSIS 39

6 CONCLUSION AND NEXT STEPS ... 39

APPENDIX A A SYSTEMATIC MAPPING STUDY OF DEPLOYMENT OR ORCHESTRATION
APPROACHES FOR IOT .. 41

APPENDIX B ADVANCES IN DEPLOYMENT AND ORCHESTRATION APPROACHES FOR IOT
-A SYSTEMATIC REVIEW ... 44

REFERENCES ... 45

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 4

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 5

1 Introduction
1.1 Context and objectives
The operation of large-scale and highly distributed IoT system can easily overwhelm operation teams.
Major challenges are to improve their efficiency and the collaboration with developer teams for rapid
and agile evolution of the system. In particular, automated solutions for run-time operations are required
in order to ensure timely reaction to problems and changes of the IoT system’s environment.

WP3 aims to develop enablers for the operational part of the DevOps process (see Figure 1). WP3 thus
will provide enablers that furnish the IoT systems with capabilities to (i) monitor their status, (ii) indicate
when their behaviour is not as expected, (iii) identify the origin of the problem, and (iv) automatically
perform typical operation activities (including self-adaptation of the systems). As it is impossible to
anticipate all problems and environment situations systems may face when operating in open contexts,
there is an urgent need for mechanisms that will automatically learn and update the operation and
adaptation activities of Smart IoT Systems (SIS).

Figure 1: Focus on the Ops of the DevOps cycle

The three enablers developed by WP3 are:
− Online Learning Enabler: Because anticipating all possible context situations that SIS may

encounter during their operation is not possible, it is difficult for software developers to
determine how a run-time adaptation of the system may impact the satisfaction of the system
behaviour and of the interactions with the environment. To address this challenge, this enabler
will apply online learning techniques to improve the way a SIS adapts during its operation.
Online learning means that learning is performed at run-time, taking into account observations
about the actual system execution and system context. Online learning incrementally updates
the SIS’s knowledge base; e.g., its adaptation rules or the models based on which adaptation
decisions are made.

− Behavioural Drift Analysis Enabler: Because of the uncertain, dynamic, and partially known
nature of the physical environment, it is very difficult or even illusory to assess at run-time the
conformity of the effects of actions in this environment with deterministic models. This enabler
will provide a set of observers to monitor the behavioural drift of SIS that may arise when

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 6

operating in such open context. In addition, it will exploit the computed drift measure to
dynamically adjust the behaviour of the system.

− Root Cause Analysis Enabler: When anomalous conditions start to arise in a complex system,
determining which anomalies are related and to which part focus attention is crucial to reduce
the mean time to resolution. Thus, the root-cause analysis enabler will try to sensibly group
anomalies related to the same problem and compute likely culprits of that problem with the least
amount of human involvement possible. Since the number of open incidents in a large
deployment can be large, it will as well prioritize the different grouped problems by potential
impact, based on past experience.

In line with these three enablers, WP3 pursues the following three main objectives (note that these
objectives have been refined and detailed based on the discussions and insights during the first months
of the project1):

− O1 - Online Learning: Design and prototypical implementation of online learning techniques
to self-improve the way a SIS adapts during its operation, thereby providing run-time adaptation
mechanisms for SIS allowing to adapt the systems to context changes not anticipated during
design time (task T3.1);

− O2 - Behavioural Drift Analysis: Design and prototypical implementation of behavioural drift
analysis of applications, to allow SIS to react in the given run-time context toward uncertainties
pertaining the physical environment and conflicting actuations possibly jeopardizing their
functionalities (task T3.2);

− O3 - Root Cause Analysis: Design and prototypical implementation of root cause analysis of
SIS to establish trust in the qualities of SIS (Task T3.3).

The figure below (Figure 2) shows a high-level architecture positioning the three enablers (objectives)
of WP3. The Online Learning enabler sits on top of the self-adaptation logic to continuously improve
the set of adaptation actions available at run-time. The Behavioural Drift Analysis enabler monitors the
system logic in operation and if behavioural drifts are detected, these may either lead to automatic
actions (via the Online Learning enabler) or to feedback to the Development cycle of DevOps. The Root
Cause Analysis enabler detects root causes at run-time in order to either trigger adaptation (by
pinpointing to the root cause for the problem) or to feed back the root causes to development.

Figure 2: Positioning of the WP3 Enablers in the Conceptual ENACT Architecture

1 In particular, for the time being, it was decided to focus the UDE resources on Task 3.1 and the interaction and collaboration with T3.2, and
not work on the run-time model checking elements of T3.3.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 7

This deliverable D3.1 focuses on describing the relevant state-of-the-art for the three enablers of WP3,
as well as to provide a set of requirements and an initial, conceptual design. These enablers will need
support for adaptation which is provided by the GeneSIS enabler (WP2) described in D2.1. This
deliverable describes the state-of-the-art, requirements and design for adaptation enactment to serve as
a technical basis for self-adaptation. Finally, this deliverable describes the interdependencies and
synergies among the three enablers developed in WP3.

1.2 Achievements
Objectives Achievements

State-of-the-art on facilitating
the operations of SIS

We conducted an analysis of the state-of-the-art on approaches to
facilitate the operations of SIS. Both industrial and academic
approaches were considered. We specifically focused on four
topics:

1. Online-learning for adaptation self-improvement
2. Behavioural drift analysis
3. Root-cause analysis
4. Support for self-adaptation

Requirement elicitation From the analysis of the state-of-the-art, we derived a set of
technical requirements for each enabler. These requirements
complement the requirements defined in D1.1 by the use case
providers. These requirements will drive the design of the enablers.

Conceptual design We provided an initial and conceptual design of each of the
enablers that will serve as baseline and plan for the first version of
the enablers. It is also made clear (i) how each enabler contributes
at addressing the challenges identified in the state-of-the-art, and
(ii) what will serve as baseline technology.

1.3 Structure of the document
The remainder of the document is structured as follows.

In Section 2, the online learning for adaptation self-improvement of SIS is presented. The state-of-the-
art (Subsection 2.1) emphasises online-learning, focussing on reinforcement learning (2.1.1), case-based
reasoning (2.1.2) and search-based and multi-agent learning (2.1.3). As a result, requirements
(Subsection 2.2) and conceptual design (Subsection 2.3) for the online-learning enabler are described.

In section 3, the state-of-the-art of context awareness and monitoring is provided, focussing on
behavioural drift analysis, overlooked in most of the current approaches. Subsections 3.1.3 deals with
static modelling approaches while Subsection 3.1.4 deals with dynamic modelling approaches.
Requirements (3.2) and conceptual design (3.3) conclude this section.

Section 4 covers root-cause analysis (RCA) whose objective is to infer what is causing an observed
anomaly by going back through the causal chains governing the system under analysis. A state-of-the-
art of root-cause analysis is presented in Subsection 4.1 followed by the identified requirements (4.2)
and conceptual design (4.3).

The next section (5) presents the support and interrelationships among techniques for agile operations
of SIS. Subsection 5.1 presents the support for self-adaptation. It is followed by the interrelationship
between the behavioural drift analysis as input for online-learning (Subsection 5.2), root-cause analysis
as input for online-learning (Subsection 5.3) and the interrelationship between root-cause analysis and
behavioural drift analysis (Subsection 5.4).

The conclusion of this deliverable and the next steps are presented in Section 6.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 8

2 Online Learning for Adaptation Self-
improvement of Smart IoT Systems

In this chapter the state-of-the-art on online-learning and the requirements for, as well as the conceptual
design of the “Online Learning enabler” are described.

In simple terms, Online learning uses observations about the actual system execution and environment
(in the form of rewards; see Figure 2) to incrementally update and thus improve the self-adaptation logic
of the IoT systems. This means, referring to Figure 2, we plan to use Online Learning to improve the
Autonomic Manager at run time.

2.1 State-of-the-art on Online Learning
This section discusses existing online learning techniques for self-adaptive systems. We focus on rule-
based approaches (or model-free learning), because they offer specific benefits in the setting of SIS. On
the one hand, rules can be executed more efficiently than models (because there is no need for additional
reasoning on models) and thus can be executed also on IoT devices with limited resources. On the other
hand, rules are human-readable and thus provide additional feedback for the “Dev” part of the DevOps
cycle.

We analyse the state-of-the-art techniques with respect to two key characteristics: (1) How fast learning
converges to an improved set of adaptation rules. (2) How system evolution is taken into account. This
means, we analyse the state-of-the-art techniques with respect to the following two key requirements
(also see Section 2.2 below):

− Convergence: An important concern when using online learning to improve the self-adaptation
logic is the time it takes for the learning process to converge. Due to the trial-and-error process
of selecting and executing adaptation actions, online learning may require many observations
to learn adaptation actions that are effective in adapting the running system. While online
learning is converging, the self-adaptive system may thus execute ineffective adaptation actions.
Executing ineffective adaptations can have real and negative consequences, because the
adaptation actions modify the live system, which is of a particular concerning in the IoT setting.

− System evolution: During evolution, software developers may modify the system, for instance,
to correct bugs, to remove seldom used features, or to introduce new features to meet new
requirements, thereby changing the potential adaptation actions of the self-adaptive system. The
speed of online learning becomes a particular concern in the presence of continuous evolution
and deployment (a key characteristic of DevOps), as the time between evolution cycles gets
shorter and shorter. Learning thus needs to happen fast enough such that it has converged before
the next evolution cycle occurs to make sense.

We structure the analysis of the state-of-the-art into the three categories: Reinforcement learning, Case-
based reasoning and Search-based and Multi-Agent Learning.

2.1.1 Reinforcement Learning
In reinforcement learning, the effectiveness of system actions are learned through interactions with its
environment [1]. The system receives a reward value as feedback for applying an action. The overall
aim of reinforcement learning is to maximize cumulative rewards. Reinforcement learning relies on two
different mechanisms: exploitation, which recommends the actions with the highest reward to be
executed, and exploration, which recommends an action (typically chosen randomly) regardless of its
reward value to prevent learning sub-optimal solutions. Unlike supervised learning, which learns from
a set of labelled training data, reinforcement learning relies only on the feedback from the environment.
Informally, the action that leads to the highest reward for a given environment becomes the rule for use
whenever this environment is encountered [2].

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 9

Tesauro et al. suggest combining reinforcement learning with queuing models to improve resource
allocation policies (i.e., rules) in data centers [3]. The queuing models are used to generate adaptation
decisions during an offline reinforcement learning phase. Convergence is facilitated by first learning
offline, thereby avoiding potentially poor rule effectiveness during the beginning of online learning.
However, this rests on the assumption that the queuing models are good enough to generate effective
enough adaptations. System evolution is not addressed. Tesauro et al. do not consider how possible new
adaptation actions may be considered during online learning.

Amoui et al. propose using reinforcement learning to learn the best adaptation actions for any given
environment state of a self-adaptive software system [4]. They describe different solutions to increase
convergence of learning, which include performing offline learning before deployment and using a
simulation of the software system to generate observations. In addition, they observe that different
reinforcement learning algorithms (such as Q-Learning or SARSA) may exhibit different convergence
rates depending on the concrete application context. System evolution is not addressed.

Kim and Park propose Q-Learning as a reinforcement learning algorithm for improving adaptation rules
at run-time [5]. Goal and scenario models are used to manually determine a set of possible states and
actions as input to learning. They show that online learning may gradually optimize the rule set but
provide no further analysis of convergence rates. They do not consider how changes in the states and
actions due to an evolution of the goal or scenario models may be captured during online learning.
Barrett et al. propose using Q-Learning for the autonomic resource allocation in the cloud [6]. To
facilitate convergence, they propose parallel learning. However, this requires that several systems
concerned with the same resource allocation tasks exist and thus could share the information they learn
in parallel. System evolution is not explicitly addressed, and in principle would become quite difficult
if involved systems underwent different forms of evolution in parallel.

Jamshidi et al. apply fuzzy Q-Learning to derive and improve fuzzy adaptation rules [7]. Adaptation
rules are evaluated based on their long-term impacts, that are calculated by predefined reward functions.
By observing the actual impact of adaptations on the system performance at run-time, adaptation rules
are modified to match the observed system and environment state. With respect to convergence,
Jamshidi et al. observe that the exploitation and exploration rates influence convergence. As an
extension of their initial work, they also demonstrate that transfer learning may accelerate learning [8].
However, transfer learning is beneficial only if observations from the source environment are much
cheaper to collect than samples from the target environment. Their approach does not address system
evolution, as it assumes that the set of system actions to be explored is fixed.

Filho and Porter [9] use a variant of reinforcement learning to determine which composition of software
components best suits the current operating environment. Their experimental results indicate that the
size of the observation window, i.e., how long observations are collected before deciding on rewards,
has an impact on how many iterations of exploration are required. However, they provide no further
analysis on how this may be exploited for increasing convergence rates. In their approach, candidate
components are determined by scanning from an initial, main component all required and provided
interfaces of linked components. Thereby, system evolution may be supported, by rescanning the
component interfaces after the system has been modified. Online learning would hence be able to
explore the new configuration space. Yet, as their learning is agnostic to which changes have been made,
it is not guided towards exploring new or changed components.

Sharifloo et al. [10], describe the dependencies between online learning and system evolution. On the
one hand, they indicate how feedback from learning itself (e.g., if no effective system configuration
could be found) may trigger system evolution. On the other hand, they analyse how the configuration
space may change during system evolution and how such a change may affect online learning. Further
they describe how these dependencies may be considered by extending the exploitation and exploration
phases of reinforcement learning. However, their work does neither provide concrete algorithms nor
experimental results considering the convergence of online learning.

In summary, convergence in reinforcement-learning-based approaches has been addressed from the
point of view of the concrete learning algorithm (such as Q-Learning vs. SARSA), the balance between
exploitation and exploration, as well as by first performing an offline learning phase. However, unlike

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 10

the strategies we aim to deliver in ENACT, none of the existing approaches use the system structure to
better guide selection of adaptations to be explored during online learning. Also, none of the approaches
take evolution into account.

2.1.2 Case-based Reasoning
Case-based reasoning aims to solve new problems by reusing solutions for similar past problems [11].
To this end, case-based reasoning involves four main steps. First, given a target problem, similar cases
are retrieved from the case base. Second, similar cases are mapped to the target problem by modifying
the retrieved solutions if needed. Third, the modified solution is tested on the target problem and further
revised if needed. Fourth, successful solutions are stored in the case base.

Qian et al. employ case-based reasoning for storing and retrieving adaptation rules [12]. When facing a
new situation, similar cases are retrieved from the case base to find an adaptation whose effectiveness
has been shown earlier. They learn from past executions to identify which adaptation would be more
effective for the system in its current environment. If no similar case can be found in the case base, their
approach resorts to using goal models to derive new adaptation rules. The use of goal models to derive
new adaptation rules provides a more structured approach than randomly deriving new adaptation rules.
Qian et al. provide no analysis of the convergence rate of their approach and whether using goal models
to derive new adaptation rules may speed up convergence. The approach uses a goal model defined at
design time and does not address how this goal model may be updated due to system evolution and how
the update of the goal model would impact the case base.

Zhao et al. propose using case-based reasoning in combination with reinforcement learning to generate
and update adaptation rules [13]. To populate the case base, they use offline reinforcement learning to
learn adaptation rules for different system goals. During run-time, case-based reasoning is used to select
the best fitting rule and reinforcement learning is used to fine-tune this rule. They present exemplary
scenarios that indicate that even though their approach may take as long to converge on an optimal rule
set as online learning from scratch, it starts with a higher effectiveness of the adaptation rules. Even
though the approach explores different settings of system goals, it does not consider an evolution of the
system itself.

In summary, convergence was not explicitly addressed in the above contributions. Also, evolution was
not considered.

2.1.3 Search-based and Multi-Agent Learning
Ramirez et al. [14] employ genetic algorithms to improve reconfiguration plans at run-time. Genetic
algorithms are a class of stochastic-based search techniques applying selection, cross-over and mutation
operators to a set of candidate solutions. They incorporate monitoring information into the genetic
algorithms, such that a change in the environment drives the search process. With respect to
convergence, their experimental results show that a relatively good set of reconfiguration plans may be
attained after 500 iterations (i.e., generations of candidate solutions). System evolution is not explicitly
supported by their approach, as the introduction of new system features would require the manual
definition of new operators for the genetic algorithm.

Moustafa and Zhang propose multi-agent, collaborative reinforcement learning for adaptive service
compositions [15]. They express the service composition as a Markov decision process and use
reinforcement learning to determine the service selection policy that leads to the highest reward. To
speed up convergence, they propose using collaborative learning, where multiple systems
simultaneously explore the set of concrete services to be composed. They observe that such collaborative
learning significantly increases the speed of exploration. However, like for Barrett et al. [6], this requires
that several systems with the same learning goal exist. With respect to system evolution, they do not
address how a change in the structure of the underlying Markov decision process may impact on
learning.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 11

Wang et al. combine multi-agent reinforcement learning with game theory for adaptive service
compositions [16]. Their experimental results indicate that convergence depends on the learning rate
(i.e., to what degree newly observed rewards override past rewards), the number of agents collaborating,
as well as the size of the composition problem (measured in terms of the service composition structure
and number of concrete services). They observe that the speedup of convergence peaks at a certain
number of agents involved and adding more agents after that point has a negative effect on convergence.
As for Moustafa and Zhang [15] as well as Barrett et al. [6], their approach requires that several systems
exist that have the same learning goal. Similarly, concerning evolution, the paper does not address how
a change on the structure of the underlying service composition model (a Markov decision process) may
impact on learning.

In summary, even though convergence was analysed in the above contributions, no specific proposals
for exploiting the system structure (like we plan in ENACT) was proposed. Also, evolution was not
explicitly addressed.

2.2 Requirements for Online Learning enabler
As discussed in detail above, the state-of-the-art on online learning for adaptive systems is addressing
the “convergence” and “evolution” aspects, important for SIS, only to a very limited degree. Those two
aspects are covered in requirements R5 and R6 below.

In addition, additional requirements for the Online Learning enabler, which need to be addressed by the
conceptual design, are described in the following paragraphs. An overview of the requirements is given
in Table 1.

Table 1: WP3 Requirements for Online Learning enabler

ReqID Requirement Description
R1 Coping with

unknown
environment

Online Learning must be able to cope with environments that are unknown at
design time (uncertainty)

R2 Learn online
during live
operation

Online Learning must continuously learn during operations, in parallel to the
live system

R3 Frequent updates
of adaptation

rules

Online Learning must frequently enough update the adaptation rules to cope
with fast and dynamic changes in the system and its environment

R4 Minimum
overhead

Online Learning may only impose a small resource overhead such that it can
be executed also in resource-constrained (IoT / embedded) devices

R5 Fast convergence Online Learning must converge quickly in order to ensure that adaptation
actions are effective

R6 Accounting
system evolution

Online Learning must take into account system evolution (from
DEVelopment) in order to accommodate new adaptation actions introduced
during system evolution2

R7 Coping with non-
stationarity

Online Learning must work in the presence on non-stationary environments

R8 Coping with large
state and action

spaces

Online Learning must be able to cope with large action and environment state
spaces to be practically applicable

The Online Learning enabler should enable an IoT-system to cope with unknown environments (R1),
which means that adaptation rules that describe how the system should adapt itself to the environment
are provided and also updated based on actual observations during operations. Based on this, it is

2 In particular, this evolution also entails a change of the adaption rules by developers. As such, possible
conflicts between manual modification of the rules vs. automated modification of the rules by means of
Online learning have to be considered.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 12

assumed that the system (also called agent) does not have any prior knowledge about the environment
and the environment dynamics.

To reduce human intervention, the Online Learning enabler should enable the system to learn online
(R2). This means that learning is done during live operation and no explicit training phase should be
passed to learn an initial set of adaptation rules (according to this, an initial set of adaptation rules needs
to be provided a priori and is then directly being optimized through the Online Learning enabler).

To make learning as efficient and fast as possible, the system should be enabled to learn from every
piece of experience it can gather, so that updates of the adaptation rules can be done in each timestep
(R3).

Another important requirement is to reduce overhead as much as possible (R4) (concerning computation
complexity and memory consumption), as also devices with very limited computing power should be
able to compute the according online learning algorithms.

Although gathering experience during live operation might be a bit costly, it is the only opportunity
while relinquishing simulations in an offline phase. According to this, the Online Learning algorithms
used in the Online Learning enabler should provide a fast convergence (R5), which means that the
algorithms should be optimized so that live operation of the system is not restricted in any way.

The Online Learning enabler should also take system evolution into consideration (R6), which means
that new actions that did not exist in prior time steps, should be taken into consideration as soon as
possible and not only existing system capabilities should be considered during optimization of the
adaptation rules.

As the dynamics of the environments (which are not known to the agent) might change over time (so-
called non-stationary environments), the frequency of changes in the environment need to be considered
properly (R7). This means that in an optimal case, learning has converged before a change in the
environment dynamics has occurred and a set of optimized adaptation rules might be mapped to a certain
situation of environment dynamics.

Last, the Online Learning enabler and the underlying algorithms/techniques should be able to cope with
very large state spaces (R8) resulting from continuous environment variables and a possible large set of
actions (e.g., if different configurations of a system are considered as actions, millions of them might be
possible). In this case possibly the field of function approximation should be investigated.

2.3 Conceptual design of Online Learning enabler
The choices that have been made concerning the conceptual design of the Online Learning enabler are
described and justified in this section. Each choice directly refers to one or more requirements.

When it comes to enabling an agent to cope with an unknown environment (cf. requirement R1 from
above), Reinforcement Learning (RL) is the means of choice. An agent using RL gains knowledge about
the environment and the values of the actions he can perform in the environment through perceiving
evaluative feedback (in contrast to e.g., supervised learning, which is using instructive feedback). This
means that no a-priori knowledge about the environment dynamics are needed. Based on the
environment state St, the agent chooses an action at to perform. The action then has a direct influence
on the environment state, so that the environment transitions into a new state st+1. In addition, the
environment responds with a certain reward (a scalar value) Rt+1 the agent can perceive and use to
compute the value of certain states or the performance of certain actions in certain states. This interaction
between an agent and its environment is modelled in Figure 3.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 13

Figure 3: Basic idea of Reinforcement Learning

In the field of RL and beyond (e.g., sequential decision making), Markov Decision Processes (MDP)
are a suitable framework to model the underlying problem [1]. A MDP is formally defined as MDP =
(S, A, T, R) with a (finite) set of states (environment states), a (finite) set of actions, a transition matrix
T defining the environment dynamics through state transitions and according probabilities and a reward
function R. Based on whether the environment dynamics T are given or not, one can use different
methods to compute a solution for the underlying MDP in form of an optimal policy.

In the case of adaptive IoT systems, actions refer to the adaptation actions that may be carried out at
run-time, while the environment states describe the environment situations that may be faced by the IoT
system. The reward that an IoT system receives by carrying out an action in a given environment state
is determined by monitoring. The MDP is a theoretical concept to describe the problem of finding an
optimal adaptation policy for the IoT system in a given environment. How the MDP (or its elements)
are implemented, depends on the concrete way how we approach the learning problem, which is
described below.

If the environment dynamics are known a priori, techniques like Dynamic Programming (DP) can be
used to compute the values of states and state-action-pairs by solving corresponding systems of linear
equations [1]. However, to cope with unknown environments (cf. R1), as stated before, RL is the mean
of choice [1]. The techniques of the RL field can therefore be divided into the subfields model-based
and model-free methods [17].

Model-based methods are some kind of hybrid methods using parts of model-free methods and DP.
Through trial and error, a model of the environment dynamics is sampled and as it is sufficient, DP
methods are used to compute state or state-action-pair values and in the end an optimal policy to solve
the underlying MDP.

In contrast to that, model-free methods (the ones which we plan to use in ENACT, see justification in
Section 2.1 from above) do not rely on an explicit model of the environment dynamics and especially
in the area of Temporal Difference Learning (TD-Learning) values of state-action-pairs can be updated
as soon as an immediate reward has been perceived (in contrast to Monte-Carlo updates) [17]. This
enables frequent updates of the knowledge and enables the methods to work online during live operation.
Both aspects are required through R2 and R3.

In TD-Learning no intensive forward-search through the state space (like in DP or Monte-Carlo
methods) of the underlying MDP is necessary, which reduces the overhead for computing the values of
state-action-pairs (cf. R4). Through the adjustment of certain parameters (like the learning-rate and
discount factor in Q-learning) the convergence of TD-learning algorithms can be tuned regarding their
convergence speed.

Figure 4 depicts the conceptual design for integrating reinforcement learning into the architecture
introduced in Figure 2. In particular, it should be noted that by using and expanding on reinforcement
learning, we can cover both the adaptation improvement layer (by means of exploration), and the
adaptation management layer (by means of exploitation). A fundamental characteristic of RL is the need
for the explicit handling of exploitation and exploration [17] [1]. Exploration is the learning of new
possible actions and the corresponding state-action values, while exploitation describes the use of
previously learned behaviour (in terms of RL: following the currently optimal policy).

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 14

Figure 4: Conceptual design of the Online Learning enabler

As the action-space is what can be seen as possible adaptations of a system, system evolution is reflected
directly within the action-space and new actions can be directly explored if an according exploration
phase is triggered (cf. R6, upper part of Figure 4).

The knowledge gathered through exploration can be exploited. The optimal policy for solving the
underlying MDP can be interpreted as provider of proper adaptation rules for every state the agent
encounters. Exploiting the learned adaptation rules means that the system executes the adaptation
actions and monitors the environment (cf. lower part of Figure 4).

The changing between exploration and exploitation in combination with the adaptation of the parameters
of the underlying algorithm (e.g., the learning rate in case of Q-learning) can be used to handle non-
stationarity of the environment. This means that new exploration phases need to be triggered in case of
a change in the environment dynamics (Subsection 5.2), like in the case of new action being available
(cf. R7, see above).

Finally, the use of additional concept like function approximation might enable existing techniques to
deal with very large state and action spaces (cf. R8). This is necessary because limitations in terms of
memory might exist which make it more suitable to use functions for the direct computation of values
instead of maintaining huge tables with explicit data for every state (of which not all might be visited).

3 Behavioural Drift Analysis of Smart IoT
Systems

Online learning is meant to be performed at run-time, considering observations about the physical
environment, the state of the system, and so the context. Context-awareness is key to collect sensor data,
to understand it and to provide valuable information to reasoning engines. Since the first definition of
context [18] a lot of middleware and software frameworks have emerged. Already in 2014, [19] finds
50 context-aware solutions in the scientific literature and today lot of well-known approaches are
available [20] to collect sensors and probes data leveraged for modelling various contextual concerns
(location, situation, social environment, etc.) and for inferring high level semantic information about
context. In ENACT, some partners participated to past European projects that provide some solutions
to collect sensors data and enrich them with semantic information (e.g., Tecnalia with SMOOL, Indra
with SOFIA3, and UDE in FI-WARE4). Based on these tools, CNRS focuses on SIS, i.e., one can
observe and quantify the behavioural evolution of SIS to deal with changing context.

3 http://sofia2.com/en
4 https://www.fiware.org/

http://sofia2.com/en
https://www.fiware.org/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 15

SIS are computing systems composed with distributed computational elements whose, when embedded
in physical things, a.k.a. devices, provide these systems with an interface to the physical world through
transducers (sensors and actuators). As such, SIS can be considered as subset of the Cyber-Physical
Systems (CPS). These systems pose new challenges. Indeed, as far as physical things are concerned, no
guaranty can be made on their availability on the long run. The underlying infrastructure of SIS can thus
be volatile. Moreover, the purpose of some of these systems can only be achieved from interactions with
the physical environment through actuators (e.g., Heating, Ventilation and Air-Conditioning (HVAC)
controllers). In this context, these systems can possibly be affected by unanticipated physical processes
over which they have no control leading their behaviour to potentially drift over time in the best case or
malfunction in the worst case (here are also considered concurrent SIS sharing the same physical system
and possibly the same actuators, e.g., an air conditioner and a heater controlling a given room). Many
platforms include context awareness and monitoring mechanisms (SMOOL, SOFIA, and FI-WARE
with the Orion Context Broker for instance). However, these platforms do not consider behavioural drift
monitoring as an awareness criterion. This is what is addressed in this section.

Behavioural drift is closely related to the dependability of the computing systems [21] [22] [23] where
the concept of integrity (i.e., the absence of improper system alterations) characterizes the immunity of
computing systems towards uncontrolled physical processes and associated uncertainties (i.e., threats
that can affect computing systems operation and undermine their dependability).

The assessment of the dependability of a computing system can be done off-line through analytical
metrics using models of the systems and, whenever possible, the known uncertainty spaces5. Although
necessary, this approach is, however, not sufficient. Indeed, the behaviour of the considered systems has
to be monitored in order to ensure that their behaviour respects some properties [24].

Online monitoring involves direct and indirect empirical metrics measuring the system itself through
probes and its effects in the physical environment through sensors, respectively. While methodologies
involved at design phase (e.g., Model-based design) and at testing phase (e.g., Model checking,
simulation, testing) are respectively devoted to off-line fault prevention and fault removal, online
monitoring is devoted to automatic fault and anomaly detection [25].

This section discusses existing online anomaly detection techniques and specifically analyses them with
respect to their ability to provide a quantitative assessment of the behaviour of the systems against their
functional and non-functional requirements. In addition to its ability at providing a feedback for the
“Dev” part of the DevOps cycle through dashboards, quantitative assessment also provides a feedback
for the “Ops” part that can be leveraged by a self-adaptive mechanism.

3.1 State-of-the-art on Behavioural Drift Analysis of Smart IoT
Systems

We do consider SIS as discrete time dynamical stochastic systems whose purpose is achieved
through interaction with nonlinear physical systems (e.g., a meeting room) within the physical
environment (see Figure 5).

5 Testing cyber-physical systems under uncertainty: Systematic, extensible, and configurable model-based and search-based testing
methodologies (European project id 645463), 2015-2017. http://www.u-test.eu/

http://www.u-test.eu/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 16

Figure 5: SIS purpose achieved through interactions with a physical system.

The observation of these systems leads to a stream of measures of the direct and indirect physical effects
inherent to the commands sent to the actuators (e.g., luminosity in the meeting room set to 300lux due
to LIGHT_ON command issued by the system) in response to stimuli (e.g., presence sensor value = 10).

More formally, observing SIS results in the generation of multivariate discrete-time data stream of
continuous behavioural and contextual attributes. Behavioural attributes correspond to the observation
of the direct and indirect effects within the physical environment. Contextual attributes are observations
allowing to differentiate states of the system (it could be stimuli occurring within the physical
environment or the system itself along with time and space information).

3.1.1 Considered anomalies
An anomaly is defined as a pattern that does not conform to the expected normal behaviour of the
system [26]. It is worth noting that the anomaly detection problem and associated solutions are somehow
close to the novelty detection problem [27]. Novelty detection is the identification of new or unknown
data that a machine learning system is not aware of during training. A novel in this case means unusual
data that are new and do not occur regularly or are simply different from the others.

In this section, we focus on complex anomalies, namely contextual (a.k.a. conditional) and
collective anomalies. When contextual attributes can be associated with behaviours and their
behavioural attributes, contextual anomalies are corresponding to behaviours that are valid under some
conditions but are abnormal in others. For instance, in European countries, the high temperatures that
typically occurs during summer would be considered as contextual anomalies if occurring in winter.
Collective anomalies correspond to a collection of consecutive behaviours which are not abnormal by
themselves but are abnormal when they occur together as a collection. As an illustrative example let us
consider a sequence of events and actions occurring as shown below:
PRESENCE_ON, LIGHT_ON, PRESENCE_OFF, LIGHT_OFF, PRESENCE_ON, LIGHT_OFF,
PRESENCE_OFF, LIGHT_OFF, etc.

The highlighted sequence is a collective anomaly although members of the sequence, taken individually,
are not abnormal when they occur in other locations in the sequence.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 17

3.1.2 Anomaly detection problem
The most common formulation of the anomaly detection problem is to determine if a given test sequence
is anomalous with respect to normal sequences. More formally:

Definition 1 (Determining if a test sequence (or a subsequence within a test sequence) is anomalous
w.r.t. the normal sequences): Given a set of 𝑛𝑛 sequences 𝑆𝑆 = {𝑆𝑆1:𝐾𝐾

1 , … , 𝑆𝑆1:𝐾𝐾
𝑛𝑛 } where 𝑆𝑆𝑖𝑖𝑘𝑘 ∈ ℝ𝑚𝑚, 𝐾𝐾,𝑚𝑚 ∈

ℕ+, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾 and a sequence 𝑆𝑆1:𝑅𝑅
𝑞𝑞 , an anomaly score for 𝑆𝑆1:𝑅𝑅

𝑞𝑞 with respect to 𝑆𝑆 is computed.

We do not presuppose any synchronization feature for recording the test sequences. Moreover, we do
consider that events (stimuli) may occur at any time and may last for an unknown duration. This
consideration leads us to assume that test sequences might be misaligned in time and space w.r.t the
normal sequences.

The Figure 6 provides a summary of the characteristics of the observation sequences further used as
input to the anomaly detection techniques.

Figure 6: Overview of the characteristics of the test sequences used as input to anomaly detection techniques

Among the different techniques that handle this problem formulation, we do focus on those that
can be easily adapted to comply with the characteristics of the test sequences depicted in Figure 6
and the considered anomalies described in section 3.1.1. Anomaly detection problem is widely
addressed in the literature and the list of the techniques presented in the sequel has not to be taken as a
complete or definitive list. To help us in our approach, we draw on existing surveys addressing anomaly
detection techniques [19, 23, 25].
In this study, we disregard shape-based discriminative techniques (similarity, etc.) relying on comparing
incoming test sequences with all the possible normal sequences. Indeed, because of the characteristics
of the test sequences considered (Figure 6) and the SIS dynamic nature, the set of normal sequences
might be infinite.

Thus, in the following, two model-based approaches are investigated:

1. Static modelling approaches. A model of the expected behaviour of a SIS is learned from the
set 𝑆𝑆 of normal sequences and is not supposed to change over time. The anomaly score is either
given by (1) the likelihood of the test sequence to have been produced by the model (e.g.,
probabilistic models) or (2) the prediction error (predictive models).

Test
sequences

Discrete-time

Data stream
Time misaligned

Space misaligned

Observations

Of

That are Is sliced

Continuous

Behavioural attributes

Contextual attributes

Multivariate
That are

Whose
variables are

Of

Discrete

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 18

2. Dynamic modelling approaches. An initial model of a SIS is built from the set 𝑆𝑆 of normal
sequences. A test model is built as test sequences arrive and is compared with the initial model.
The anomaly score corresponds to the dissimilarity value of both models.

3.1.3 Static modelling approaches
For these techniques, a set 𝑺𝑺 of normal sequences is used to learn predictive and probabilistic parametric
models. Figure 7 provides a summary of the techniques reviewed in this section.

Figure 7: Quantitative anomaly detection based on static modelling approaches

3.1.3.1 Predictive Models
Predictive models consist in modelling normal behaviour through a parametric model used for
predicting observation at each time 𝒌𝒌. Abnormal behaviours are those whose real observations
differ from the predicted ones.

The main approach in this category is to model test sequences through Neural Networks (NN) and more
specifically the extended Recurrent Neural Networks (RNN), i.e., the Long Short-Term Memory
(LSTM) approach. In [29] authors use stacked LSTM networks for anomaly/fault detection in time
series. A network is trained on non-anomalous data and used as a predictor over a number of time steps.
The resulting prediction errors are modelled as a multivariate Gaussian distribution, which is used to
assess the likelihood of anomalous behaviour (see Figure 9).

In [30] authors present an unsupervised approach to detect cyber-attacks in Cyber-Physical Systems
(CPS). A Recurrent Neural network is used as a time series predictor. The Cumulative Sum method is
further used to identify anomalies in a replicate of a water treatment plant (see Figure 8).

In [31] authors provide a procedure for anomaly detection in hybrid systems able to cope with discrete
and continuous variables (mainly industrial systems, i.e., Cyber-Physical Production Systems (CPPS))
that uses automatically generated behaviour models (Hybrid automata). Model are learned from logged
system’s measurements in a hybrid automaton framework (HyBUTLA algorithm). The presented
anomaly detection algorithm leverages the learned model for predicting the system behaviour and
compares it with the observed behaviour in an online manner (ANODA algorithm). Alarms are raised
whenever a discrepancy is found between these two.

Normal
sequences

Static Model

Predictive

Probabilistic

Recurrent Neural Networks
(RNN)

Prediction error

Likelihood

Test sequence Anomaly score

Dynamic Bayesian
Networks (DBN) Possibilistic

Degree of possibility

Hybrid automata

Stochastic Petri nets

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 19

Advantages and disadvantages of the predictive modelling techniques.

The main disadvantage of these approaches resides in the fact that they require a high amount of normal
sequences for modelling all the possible system behaviours. Unfortunately, with regards to the
complexity of the SIS, this is unlikely to happen. Moreover, these models are generally hardly
interpretable, their intrinsic structure and parameters making difficult reverse analysis for
anomaly understanding [32].

Figure 8: Attack detection on the SWaT dataset [30]

Figure 9: Anomalous sample sequences and corresponding

likelihoods [29]

3.1.3.2 Probabilistic Models
Probabilistic models consist in modelling normal behaviour through a parametric model and
considering abnormal behaviours as those having low probability to have been generated by the
model.

In this category, Bayesian Network (BN) and Dynamic Bayesian networks (DBN) approaches are
widely used. Some examples are covered in [33, 34].

In [35] authors propose a graphical model-based approach for profiling normal operational behaviour
of an operational Industrial Control System (ICS) referred to as SWaT (Secure Water Treatment). Timed
automata are learned as a model of regular behaviours shown in sensors signal like fluctuations of water
level in tanks. BNs are learned to discover dependencies between sensors and actuators. The detection
results can be quantitatively interpreted and the abnormal sensors or actuators localized thanks to the
interpretability of the graphical models.

n-order Markovian models, as special case of DBN, assume that normal and test sequences are generated
by a Markovian process, i.e., observations at time 𝑘𝑘 only depend on the state of the hidden process at
time 𝑘𝑘 − 1,𝑘𝑘 − 2, … ,𝑘𝑘 − 𝑛𝑛. Although this could be a limitation in some cases, this modelling
framework is particularly well suited for representing dynamical systems and capture their uncertainties
through probabilities [36, 37]. Behavioural uncertainties pertaining the transducers (sensors and
actuators) and the physical environment are captured through probability density functions (pdf). In this
category, Hidden Markov Models (HMM) and derivatives are widely used as anomaly detection
technique [34-37].

In [41], authors propose a fault detection and isolation technique for timed stochastic discrete event
systems modelled with partially observed timed Petri nets. The models include the sensors used to
measure events and markings along with the temporal constraints to be satisfied by the system
operations. The temporal constraints are defined according to tolerance intervals specified for each
transition. A fault is an operation that ends too early or too late. The set of trajectories consistent with a
given timed measured trajectory is first computed. Then, the probability that the temporal specifications

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 20

are unsatisfied is estimated for any sequence of measurements and the probability that a temporal fault
has occurred is subsequently obtained.

From Deterministic to probabilistic modelling.

In [42] authors assume that the normal behaviour of SIS can be modelled through a deterministic Finite
State Machine (FSM). This a priori model is further transformed to its Input/Output HMM counterpart
(So as to account for uncertainties pertaining the physical environment) and the likelihood of a test
sequence to have been produced by the model used for measuring the effectiveness of the system online
(see Figure 10 [42]).

 Figure 10: The model of the ideal expected
behaviour of an application is specified in
terms of the effects it must produce within the
physical environment as it executes (Moore
FSM). This model is then projected into its
probabilistic Input/Output HMM-Based state
observer counterpart. The log-likelihood
value (]−∞; 0]) computed by the state
observer gives direct insight into the
behavioural conformity of the application as
it executes.

Advantages and disadvantages of the probabilistic modelling techniques.

Interpretability of the models is a key advantage of these techniques. Their main disadvantage is that the
interpretation of the likelihood value as a measure of the behavioural drift is difficult. Indeed, given a
model, there are numerous observation sequences corresponding to a normal behaviour. Each sequence
leads a particular likelihood value which depends on the parameters of the probability density functions
it leads to go through in the model. Moreover, the likelihood value highly depends on 𝐾𝐾 (test sequences
size) whose configuration is a challenging task (the lower the value, the higher is the probability of
occurrence of the subsequence; the higher the value, the lower is the probability of occurrence of the
subsequence).

3.1.3.3 Possibilistic Models
Possibilistic models consist in modelling normal behaviour through a parametric model and
considering abnormal behaviours as those having low possibility to have been generated by the
model.

Compared with the probabilistic approach discussed in section 3.1.3.2, the difference lies in the
behavioural uncertainties pertaining to the transducers and the physical environment. Indeed, with
possibilistic models, uncertainties are captured through possibility functions (based on fuzzy sets)
defining the possibilities for events or physical effects to have a specific value at a given time 𝑘𝑘.

In [43] authors propose a possibilistic approach for assessing Cyber-Physical Systems (CPS)
effectiveness through a Possibilistic Input/Output Hidden Semi-Markov Model PIOHSMM.

Advantages and disadvantages of the possibilistic modelling techniques.

The main advantage of this approach is that the interpretation of the likelihood value as a measure of
the behavioural drift is made easier thanks to normalized distributions of possibilities and underlying
calculus. Compared with probability distributions, distributions of possibility, through fuzzy sets, are

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 21

also more convenient for defining user’s preferences. Moreover, the likelihood value (i.e., the degree of
possibility) does not depend on the test sequences size 𝐾𝐾.

3.1.4 Dynamic modelling approaches
An initial model is built from the set 𝑺𝑺 of normal sequences. A test model is further built as test sequences
arrive and compared with the initial model. The anomaly score corresponds to the dissimilarity value of
both models. Figure 11 provides a summary of the techniques reviewed in this section.

Figure 11: Test sequence anomaly detection based on dynamic modelling approaches

The notion of Concept drift is relative to the unexpected/anomalous evolution of the statistical
properties of the model variables. The basic idea is to model the observed behaviour from test sequences
as they arrive and compare the obtained test model with the normal behaviour model. Dissimilarities
between models give the anomaly score.

Authors in [44] focus on quantitative measure of concept drift and introduce the notion of drift
magnitude whose value can be quantified through distance functions such as Kullback-Leibler
Divergence or Hellinger Distance. Here the anomaly is related to the model and not the test
sequences and this approach is used for (1) keeping normal behaviour model up to date and (2)
increasing the prediction of the incoming observation values.

Close to the idea of concept drift is the notion of Bayesian Surprise. A Surprise [45] quantifies how
data affects an observer. It quantifies a mismatch between an expectation and what is actually observed
by measuring the difference between posterior and prior beliefs of the observer. In [46] authors propose
using Bayesian surprise as a measure of the learning progress of reinforcement learning agents. This
measure of surprise produces a “curiosity reward” that spurs agents to behave so as to maintain learning
efficiency by favouring regions of their environment leading a surprise (i.e., unknown region leading
new information to be acquired) while avoiding "boring" regions (i.e., regions previously sought).

Advantages and disadvantages of the dynamic modelling approaches.

The main disadvantage of the concept drift approach is that the test model accuracy is highly dependent
on the amount of observations needed to learn it.

These techniques are depicted in Figure 7 and Figure 11, respectively, and are further described in the
sequel. A special attention is put on the interpretability of the techniques and their underlying models,
i.e., their ability at making interpretable the behavioural drift value obtained.

3.2 Requirements for Behavioural Drift Analysis enabler
In this section, we present requirements that will drive the development of the behavioural drift analysis
associated tools. The distribution of the forecasted tools within the DevOps loop is presented in Figure
12 assuming the following inputs are provided: (1) the model of the physical environment describing
dependencies between actuator effects that may hamper the deployed applications expected behaviour;
(2) the deterministic model of the SIS expected behaviour and (3) the tolerance model including
technological uncertainties pertaining sensors accuracy and epistemic uncertainties relative to how the
behaviour of the SIS being observed is judged as being acceptable by the users.

Normal
sequences

Initial Model

Distance/divergence
functions

Test sequences
Anomaly score

Test Model Concept drift

Bayesian surprise

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 22

Figure 12: Distribution of the forecasted tools within the DevOps loop.

From the designer perspective, the stochastic behavioural drift observer modelling framework is
intended to ease (1) the development of the behavioural drift observer and (2) the interpretation of the
quantitative behavioural drift measure.

Table 2: WP3 Behavioural drift analysis requirements

ReqID Concern Requirement Description

R1 Model Facilitate models’
interpretability

The modelling framework underlying the
behavioural drift observer shall facilitate
models’ interpretability

R2 Model
Cope with model variables
temporal requirements and

transient behaviours

The modelling framework underlying the
observer shall cope with model variables
temporal requirements and transient behaviours

R3 Model Facilitate models’
elicitation and reusability

The stochastic behavioural drift observer
modelling framework shall facilitate models’
elicitation and reusability

R4 Model Define custom tolerances

The designer shall be able to define custom
tolerances to cope with natural variability of the
sensors readings and uncertainty towards users’
satisfaction with regards to SIS behaviour
(epistemic).

R5 Operation Receive feedback from
operation

The designer shall receive feedback from
operation

R6 Operation

Quantitative measure and
normalized, independent of

the observer and its
underlying behavioural

models.

The behavioural drift measure shall be
quantitative and normalized (∈[0,1]),
independent of the observer and its underlying
behavioural models.

The following requirements apply:

Behavioural drift
observer synthesizer

Tolerance
model

Deterministic
Behavioural

models

Online behavioural drift
estimation

Deterministic Model
learning

Observations
Stochastic behavioural
drift observer modelling

framework

Reward function for online
learning

Input
Tools

Diagnosis

Deploy Monitor

Physical
system model

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 23

a. The modelling framework underlying the observer shall:
i. Be interpretable by the designer who needs to understand the relationship

between the observed variables and the description of their behavioural
requirement within the model,

ii. Cope with model variables temporal requirements and transient
behaviours.

b. The stochastic behavioural drift observer modelling framework shall facilitate
models’ elicitation and reusability. One should define SIS expected behaviours from
a deterministic perspective, free from any uncertainties (generic behavioural models on
the shelf) and obtain their stochastic counterpart by merging the tolerances associated
to each defined variable. Sensors to be used (most likely defined in the physical system
model) shall be defined in an abstract manner at development time while the concrete
sensors shall be defined during operation (reusability, separation of concerns).

c. The designer shall be able to define custom tolerances including (1) the natural
variability of the physical properties being observed (uncertainties pertaining the
physical environment and the sensors), (2) uncertainties (vagueness) relative to how the
behaviour of the SIS being observed is judged as being acceptable by the users.

During operation the following requirements apply:
a. The designer shall receive feedback from operation helping him (1) to tune the

models, (2) to help identifying the underlying root cause of the behavioural drift.
b. Being used as a reward function for online learning, the behavioural drift measure

shall be normalized, independent of the observer and its underlying behavioural
models.

3.3 Conceptual design of Behavioural Drift Analysis enabler
In this section, we review baseline technologies and detail our plans for developing the approach and
tools based on requirements detailed in the previous section.

3.3.1 Stochastic behavioural drift observer modelling framework
Table 3 provides a summary of the state-of-the-art underlying modelling approaches used as a basis for
estimating an anomaly score (i.e., behavioural drift). Approaches are considered w.r.t. the requirements
detailed in the previous section.

Table 3: State-of-the-art approaches for behavioural drift score assessment and their compliancy with requirements

Approach Interpretability Deterministic vs stochastic
parameters isolation

Tolerance Discrete &
continuous variables

Normalized
score?

Recurrent Neural
Networks (RNN) Black box No Continuous only

No Hybrid Automata Differential
equations Not applicable Yes

Dynamic
Bayesian
networks
(DBN)

Probabilistic

Good

Mean/variance*
(@state & state-transitions)

Uncertainty
(variability)

Continuous only
Possibilistic Core/boundary*

(@state& state-transitions)
Vagueness

(preference) Yes

Stochastic
Petri nets
(PN)

Probabilistic Mean/variance*
(@state & state-transitions)

Uncertainty
(variability) No

Possibilistic Core/boundary*
(@state & state-transitions)

Vagueness
(preference) Yes

* Probabilistic models are often based on probability density functions (pdf) representing normal probability distributions described through
mean and variance/covariance parameters. For their part, possibility distributions are described through core (representing values of the variable
for which the possibility value equals to 1) and boundaries (representing values of the variable for which 0 < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 ≤ 1).

Probabilistic and possibilistic graphical models (DBN and PN) exhibit good compliancy with
requirements. There exist many DBN/PN derivatives. Probabilistic/Possibilistic DBN-based
behavioural drift analysis are covered in [42] and [43], respectively. We do plan to investigate on
stochastic PN [44-46] derivatives for their ability to manage concurrent processes.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 24

3.3.2 Behavioural drift observer synthesizer
The purpose of the synthesizer is to produce the concrete behavioural drift observer to be deployed by
GeneSIS. Here, the plan is to rely on the flow-based programming paradigm (FBP) [50] where
concrete applications are compound of components (black boxes) described by their interface (input
ports, output ports and properties). This approach facilitates the separation of concerns, the components
connection network being specified externally to the components (see Figure 13). A good representative
of this approach in the Internet of Things (IoT) domain is Node-RED where components are nodes.

Figure 13: Flow-based programming example

3.3.3 Deterministic Model Learning
To help the designer to facilitate the tuning of the models considered at development time, we do plan
to make evolving the observer stochastic model at run-time (test model). For this purpose, Concept drift
and Bayesian surprise approaches along with their associated model learning algorithms shall be
leveraged. Our objective here is to derive the deterministic counterpart of the stochastic test model (most
likely in the form of timed automata, free from uncertainty parameters) and feedback it to the designer.
Besides potentially exhibiting parameters drift, it could also make appear unexpected transitions and
states, whose identification could (1) help analysing root cause of the drift on the long run, (2) help
making the initial model more accurate.

4 Root-Cause Analysis for Smart IoT Systems
Root-cause analysis (RCA) objective is to infer, given a set of observations that contain some types of
anomaly, what is causing this observed anomaly by going back through the causal chains governing the
system under analysis. It is possible to observe problems like a behavioural drift among others during
the operation of a SIS. But to help the developer to fix the problem during development, it is important
to pinpoint the root-causes of the problems as much as possible. This is the purpose of the next section.

4.1 State-of-the-art on Root-Cause Analysis
RCA is an old field that predates computer science as the need for systematic troubleshooting is intrinsic
to any complex system. Although there is a vast literature on RCA, we will restrict to techniques that
can be applied to IT systems. This condensed state-of-the-art will provide a general framework to
understand RCA techniques, for more in-detail explanations of each of the methods, other general
surveys are available [23] [51]. For specific areas, specific surveys exist for computer networks [52],
software [53], industrial systems [22], smart buildings [54], (regular) buildings [55], machinery [56],
swarm systems [57], automatic control systems [58] [59], automotive systems [60] [61] and aerospace
systems [62].

We will first introduce a general framework to understand any RCA technique that we will use to explain
the challenges and how different families of methods address these challenges. Then, in the last part of
the section, we will talk about specific challenges and techniques for IoT.

𝑎𝑎1

𝑎𝑎𝑘𝑘

App(1)

𝑎𝑎2

𝑎𝑎4
𝑎𝑎3

𝑐𝑐1
𝑐𝑐2

App(2)

𝑐𝑐3
𝑐𝑐4
𝑐𝑐5

App(3)
𝑐𝑐6
𝑐𝑐7

Physical
system

𝑒𝑒1

𝑒𝑒𝑘𝑘

𝑒𝑒2

𝑒𝑒4
𝑒𝑒3

→
→
→
→

→

𝑝𝑝1
𝑝𝑝2
𝑝𝑝3

𝑝𝑝𝑛𝑛

Observer
𝑖𝑖1
𝑖𝑖2
𝑖𝑖3

𝑝𝑝 Drift

𝑐𝑐𝑖𝑖: Actuator command
𝑎𝑎𝑖𝑖: Actuator

𝑖𝑖𝑖𝑖: Sensor input

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 25

4.1.1 General framework for Root-cause analysis
There are three key ingredients to be able to perform a successful RCA (Figure 14):

− Domain Knowledge, the laws that govern the system (e.g., the laws of mechanics for a
mechanical device). Obviously, except from mathematical abstractions, anything would have to
satisfy the laws of physics, but it is understood that domain knowledge refers to the rules that
govern the system at an abstraction level that makes these rules practically applicable (e.g., no
one will use quantum mechanics equations to troubleshoot a printer, even though the printer
must obey those rules, as an easier and more tractable set of rules is enough to model the device
for that particular purpose).

− System Knowledge, the elements that comprise the system and their relationships (e.g., the
different components of the printer and their relations, like relative position, elements in contact,
groups of elements related to the same function, etc.)

− Observations, observable data coming from the system (e.g., printed pages from the printer,
information from its internal monitoring sensors, history of previous failures, etc.)

These three elements allow making inferences on what could be happening in the unobserved parts of
the system, predict future observations and potentially solve the RCA problem, among other things.

Figure 14: The key ingredients for inference in a system

The different approaches to RCA differ on how they model each of these parts (or merge them in larger
models). For instance, observations can be assumed to be noiseless or noisy, giving rise to deterministic
RCA methods (e.g., using Propositional logic [63], fault trees [64]) in the former case or to probabilistic
methods (e.g., using Bayesian networks [65], Markov logic networks [66]) in the latter.

In a similar fashion, System Knowledge can be perfect or flawed. Assuming one or the other
distinguishes between methods that can update (or suggest fixes) to current system knowledge and others
that might simply give wrong answers in the presence of incorrect or missing facts. Methods that can
handle inexact system knowledge are necessarily more complex and not as popular in research as the
ones assuming perfect information, although in many fields this is a frequent source of problems. For
instance, in large IT industrial environments it is frequently assumed by administrators that the
corresponding Configuration Management Database (CMDB) describing the infrastructure can contain
large number of errors or omissions6.

Finally, Domain Knowledge can be given as an input to the method (this encompasses model-based
methods as they are sometimes called in the literature) or automatically derived using Machine Learning
(ML) techniques. The latter techniques are sometimes called model-free, although automatically
generated model methods would describe more precisely what they actually do. Note that the application
of ML can yield models that include both the Domain Knowledge plus the System Knowledge. For
instance, an assumption that is sometimes done when diagnosing a black-box system (or a system that
people do not understand, i.e., they do not have a model for it), is that similar symptom patterns are
related to similar root-causes. In this case, a potential way to proceed is to use a nearest neighbours
classifier that maps the symptoms to an N-dimensional space and compares to previously seen
symptoms for which we know the root causes. In this case, the model consists of the labelled points, and
the N-dimensional space both implicitly contains the information about the domain knowledge and the

6 https://www.slideshare.net/ITInvolve/overcoming-the-challenge-of-cmdb-inaccuracy

https://www.slideshare.net/ITInvolve/overcoming-the-challenge-of-cmdb-inaccuracy

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 26

system knowledge (e.g., if the printer has two trays, it might have two variables, one per tray sensor.
Should it had only one tray, only one variable will be present).

Model-based methods (i.e., with a human curated input) have many advantages due to the explicit
representation of the causal chains, like the capacity to react to previously unseen failures, including
black swans (i.e., infrequent rare events). However, they have two major disadvantages: (i) knowledge
must be extracted from experts, a process known as knowledge elicitation, which is a very costly and
slow process [67], and (ii) large models or knowledge bases are difficult to maintain and validate. On
the other hand, automatically generated model methods rely only on either large quantities of data and/or
that the generalization capabilities of the learnt models are similar to the real causal model in order to
deal with unseen cases. There is a whole line of research in ML that tries to incorporate as much domain
knowledge available to restrict the models learnt [68], i.e., learning to predict the next position of a ball
considering some very basic physic laws that have low cost of elicitation, so that no expert is required
and the knowledge base is small enough so that maintainability and validation aspects are easy to solve.

Not all ML techniques necessarily learn the System Knowledge, some of them can work on the Domain
Knowledge alone or reduce the amount of System Knowledge by considering a variable length input.
For instance, when working with language, the inputs (e.g., sentences) can typically have variable
length. Or if one models an IT infrastructure as a graph, graphs can be arbitrarily large. A frequent
solution is to work with models that can handle sequences (like the sequence of neighbours of a node in
a graph [69]).

Observations in IT come usually from monitoring tools specialised in gathering them and providing
unified access to the data. Collected data can be of a wide variety of types, from very structured, like a
specific known set of metrics, to almost unstructured such as logs. These observations can be noisy for
many factors, including low accuracy of sensors, bad conditions for readings, or simply because of the
own particularities of the monitoring system setup: for instance, unsynchronized clocks, different
granularities of collection, variable lags, etc., can alter the temporal order of event observation. This is
a relevant issue because temporal sequence is often used to restrict feasible causalities (i.e., a
consequence cannot precede its cause), and causality discovery is essential for an informed root cause
analysis. As a result, some techniques include the possibility to look for correlations between events
both in the future and in the past [70].

In complex systems, failures usually propagate through causal chains and produce evolving fingerprints
of noisy symptoms. One of the first tasks to accomplish for an automated tool helping humans
troubleshoot a system is to group events that are causally connected (and keep unrelated events
separated). This might not be straightforward to achieve since components of a system can exhibit
symptoms of two unrelated problems. A naïve Bayesian approach is sometimes used, in which problems
are assumed to have independent probability of happening (something reasonable to some extent if the
problems are not causally related). In such scenario the probability of concurrent problems can be very
low. This has been used in many RCA approaches to limit the number of concurrent problems to a single
one [71] or a small number of them [72], since it can make the problem more computationally tractable.

In practice, large deployments can exhibit many concurrent problems, and many more apparent
problems, especially when noisy sensors (or, equivalently, alarm conditions known to have false
positives) are present. It is frequent that some of these problems are recurrent and either the
administrators of the system have already some recurrent mitigation action (e.g., reset a particular server
every night) or that simply they are not relevant enough to be paid attention. In any case, such situations
must be identified, since administrators prefer to focus on the “new” problems than the rather old and
already known ones. This fact is frequently overlooked in academic approaches to RCA, since they
focus on finding the correct problem or set of problems, not on how to reduce and prioritize these
findings when there are lots of problems in the system. This might be caused by experimenting with
small systems compared to the sizes of large industrial deployments. This is problematic because the
IoT world was born with the promise to connect everything, thus potentially creating huge systems.

In contrast, industrial approaches have favoured solutions with low computational cost that can work at
a scale. For instance, decision trees were used for RCA in high-volume production environments at eBay
[73]. Obviously, techniques with better running time in general produce less accurate results than more

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 27

sophisticated but expensive methods, but in these high-volume massive environments having an
approximated indication on what could be the potential causes for most of the failures is better than very
precise analyses of each one of the failures. There have been attempts to use more computationally
complex models by improving their running times using the usual performance improvement strategies:
parallelizing [74] or using hardware acceleration (e.g., using GPUs [75] or FPGAs [76]).

4.1.2 RCA for IoT
Where does IoT fit into this generic framework for RCA? First, it might be a very dynamic environment
in some cases, with devices joining/leaving a system in relatively small amounts of time (e.g., mobile
devices connecting to a particular antenna). Second, most of the communications are likely to be
wireless, introducing a higher degree of unreliability that can be difficult to distinguish from the normal
dynamicity mentioned in the previous point (i.e., we are not receiving information from the sensor
because the sensor is no longer in range or because communication failed?). This can affect not only the
diagnosed system, but the diagnosing system, as observations can get lost and/or affect RCA
computation if the RCA is done partly at the edge (using the own diagnosed system). Third, depending
on the scenario, the number of components that would have to be considered in the diagnostic could be
very large. Finally, battery-powered devices may have a low-activity profile to extend their autonomy
of operations, meaning that their inputs might not be synchronized and have the same frequency as other
information the RCA can use for diagnosis, worsening the problem of observation noisiness and out of
order data.

The first problem, dynamicity, creates a lot of pressure on keeping the system knowledge up-to-date.
Considering that in IT environments with less dynamic environments this is already a problem, clearly
techniques should adapt to include the possibility to model explicit failure of System Knowledge (e.g.,
include the possibility in a Bayesian Network that components are no longer present, thus undefining
all their variables). The second problem, unreliable communication, has been either modelled by
explicitly incorporating the possible misses of messages (particularly in the work of computer networks
[77]) and by resilient actor-based mechanisms [78].

To deal with scalability, the third challenge mentioned, there has been work in splitting the computations
into components that could be reused (i.e., reusing as much as possible diagnostics from similar devices)
[79], or use simpler models, as we have seen before in industrial settings.

Some interesting work focuses in creating self-adaptive decision support trees based on streamed data
including change detection, to tackle both scalability and high dynamicity challenges. This work
assumes that the amount of information is so large that the data stream can be considered continuous
and in general it is not possible to read data more than once. Differently from classical methods such as
C4.5, these algorithms do not assume that all training data are available simultaneously in memory and
deal with change over time. In particular, different methods have been proposed based on Hoeffding
Trees or Very Fast Decision Tree method (VFDT) [80]. For instance, CVFDT is an adaptive variant of
VFDT proposed by Hulten et al [81]. Adaptive Hoeffding Trees were later proposed in [82] for the same
purpose but detecting change and updating the decision tree based exclusively on data analysis. Attempts
to parallelize the creation of a decision tree for heavy streams are implemented in Apache Samoa7.

Some industrial approaches rely on keeping the tracked relationships in the system knowledge at a very
high abstraction level, for instance, tracking only which elements of the system call each other. In this
setting, it is possible to identify the likely culprits for performance degradations using simple heuristic
rules. For instance, since the running time of a call causally depends in part on the running times of the
nested calls, looking for the “deepest” node in the call hierarchy that is exhibiting some anomaly is likely
to provide a good culprit candidate. This candidate can be then used as a starting point for a human
operator to further investigate. However, the increasing adoption of more decoupled complex
architectures with messaging queues, bidirectional communication channels, peer-to-peer protocols, etc.
blurs the definition of what a business transaction8 is and what are its “deepest” nodes (Figure 15). One

7 Apache Samoa: https://samoa.incubator.apache.org
8 By business transaction we mean the sequence of executed actions in a system in response to a functionality that the business needs to
provide. E.g., all the code executed in a distributed system that deals with a “user login”, “chart checkout”, etc.

https://samoa.incubator.apache.org/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 28

possible way to address this issue is to increase the amount of system knowledge: no longer use
homogeneous black box nodes to represent the system, but identify the architectural roles they play (i.e.,
if they are a message queue, a server using sockets to push notifications, …) and then add the
corresponding domain knowledge to extend the basic heuristic rules to these more refined scenarios.
However, this approach has much more complexity than the simple heuristic method and, thus, a trade-
off between scalability and precision of results is established.

Figure 15: An industrial diagnostic tool, blaming one of the deepest nodes in the call hierarchy for the performance

degradation in a business transaction.

4.2 Requirements for Root-Cause Analysis enabler
In terms of capabilities that the RCA enabler must provide, they are linked to the challenges outlined
for IoT in the previous section, namely:

Table 4:WP3 RCA enabler requirements

ReqID Requirement Description
R1 Being able to cope with highly

dynamic environments
Establishing a mechanism that can diagnose regardless of the
particular components involved (so, reasoning at a higher
abstraction layer in a way that is able to deal with fuzzy
similarities), eventually considering changes in the system
composition itself as potential root-causes.

R2 Support for Inaccurate System
Knowledge

Identify situations where different observed anomalies or
problems may be observed in different components in the
system that are apparently too far to be part of the same problem
(typically because of lack of the system knowledge that would
make their relationship explicit, like a shared resource), but
that, nonetheless, a historical correlation between them can be
established so that they can be merged together even if the
System Knowledge necessary is not available.

R3 Explicitly consider
communication unreliability

In the most extreme cases subparts of a larger system may
become disconnected and still some diagnostic capability has
to be retained.

R4 Compensate for noisy and out-
of-order data

Observed events in two similar problematic situations may
occur in slightly different order. Even if they happen in the
same order, the monitoring system may capture them in the
wrong order, depending on different sampling granularities for
instance. However, both situations may have the same root
cause and may end up leaving the system in the same final step.
We need to be able to realize that these situations are similar.
Evidence noise also needs to be taken into consideration.

R5 Prediction of problem evolution
and its impact

Although this goes beyond the pure RCA, in large systems
where many anomalies are happening most of the time,
knowing the root-cause of a problem might be less important
than determining the potential impact of each one of the current

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 29

problems. Typically, this could be achieved by mining previous
problem evolutions considering appropriate impact metrics.

To accomplish these goals the RCA enabler needs to have access to:
− Some basic system knowledge (i.e., what devices are on our IoT environment and how they

relate to each other, but where the relationship information may not be completely accurate).
− Monitoring metrics from the IoT devices.
− An anomaly detection mechanism that will flag anomalous situations in the system, i.e., the

observable symptoms.

Note that in description of task T3.3 the automatic creations of models for IoT devices is mentioned, but
this particular task has been moved inside the simulation efforts of task T2.4.

4.3 Conceptual design of Root-Cause Analysis enabler
The high-level architecture of the RCA enabler is shown in Figure 16. The diagnoser receives
monitoring information from the IoT system through one or more data collectors, depending on the
number of devices in the system. It then uses this information, together with the historical information
of previous and currently open incidents to either create new incidents or enrich/merge/split existing
ones. The creation of a new incident occurs when we are observing anomalies that are caused by some
problem that was not currently present in the system, although it might have been previously observed.
When new anomalies are in fact expected extensions of currently detected problems, then the diagnoser
will enrich a currently open incident. While it will merge/split incidents if new evidences suggest that
current anomalies could establish a link between currently open incidents or that the observations are
better explained by two independent problems.

Figure 16 shows one of the potential ways in which information can reach the data collector. In this
particular case an IoT device executes code that has been instrumented with one or more probes. Probes
are just an abstraction that can include a wide range of forms such as automatically instrumented
bytecode, manually inserted log actions in the code, system performance metric capture (e.g., CPU load,
memory used), etc. Probes report data back to an agent that runs locally in the device, aggregates all the
information of the probes and periodically sends the information to the data collector. Agents may be
considered as an example of edge computing, since they may perform some basic computations on the
received data (e.g., send aggregate data on windows of fixed size) to reduce the amount of bandwidth
required to transfer all the data to the diagnoser.

Finally, the user (typically a System Operator/Administrator) will connect to the Root cause analysis
dashboard (the Diagnoser in Figure 16) where the prioritized list of open incidents will be available,
with the current likely culprit and potential evolution, based on the incidences observed so far.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 30

Figure 16: High-level design of the RCA enabler architecture

Section 4 has described the RCA enabler, which is the last of the three enablers explained in this
document. In next section we will look at how these enablers can work together.

5 Support and Interrelationships among
Techniques for Agile Operation of Smart IoT
Systems

Techniques can work in isolation, but we expect enhancements that improve their capabilities by
exploiting the interrelationships among them as described below.

5.1 Adaptation Enactment as Support for Self-Adaptation
As depicted in Figure 2, the enactment layer is responsible for adapting the running system based on the
actions from the management layer. In turn, it provides the management layer with abstractions (i) to
facilitate their understanding and reasoning activities as they can analyse a simplified version of the
running system, and (ii) to facilitate the actual adaptations of the system (i.e., trigger high-level
adaptation commands, which, in turn, are transformed in atomic modification actions of the system). In
addition, the introduction of this layer improves the separation between the running system and the
adaptation layer. This separation of concerns brings two main benefits: (i) easier integration of reasoning
engines (i.e., the reasoning engines do not need to be tailored to the running system details and
implementation), and (ii) easier integration of execution environments (e.g., this layer can abstract and
hide differences between the operation and test environments making it easier to add a new one). In the
rest of this section we introduce state-of-the-art on mechanisms to enact adaptation before we detail the
conceptual design of our Adaptation Enactment layer.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 31

5.1.1 State-of-the-art on Adaptation enactment
For some years now, multiple tools are available on the market to support the continuous deployment
of software systems – e.g., Puppet9, Chef10, CFEngine11. These tools were first defined as configuration
management tools aiming at automating the installation and configuration of software systems on
traditional IT infrastructure. Recently, they have been extended to offer specific support for deployment
on cloud resources. Meanwhile, new tools emerged and were designed for deployment of cloud-based
systems or even multi-cloud systems [83] (i.e., systems deployed across multiple cloud solutions from
different providers) such as CloudMF [84], OpenTOSCA [85]12, Cloudify13, Brooklyn14, Kubernetes15.
On the other side, few tools such as resin.io16 and ioFog17 are specifically designed for the IoT. However,
so far, these tools have not specifically considered deployment across the whole IoT, Edge, and cloud
space. Even if, some tools are now being extended toward Edge infrastructures– e.g., Kubernetes,
OpenTOSCA [85]. It is also worth noting that within the TOSCA standardization process, a language
for describing deployment of cloud application, an ad-hoc group has been created to investigate the
extension of TOSCA toward Edge infrastructure.

All these platforms provide different levels of support for the adaptation of the system. It is worth noting
that such support typically includes two activities: (i) the monitoring of the system, and (ii) the actual
enactment of the adaptation of the system. Regarding monitoring, these platforms typically offer
mechanisms to monitor the status of the deployment process but very few of them provide mechanisms
to monitor the status and execution of the system once deployed. Moreover, these tools do not provide
mechanisms to integrate and reflect directly the monitored run-time information into the deployment
model (as a way to provide feedback to the developers). This is often due to the fact that the monitoring
activity is delegated to a monitoring platform. However, even then, to the best of our knowledge, none
of them provide mechanisms to monitor the execution flow of the deployed software components. This
is particularly important for the development and maintenance of the software components to be
deployed on resource constrained IoT devices, as it is often difficult or even impossible to access and
store logs on such devices. Regarding adaptation enactment, there are two main approaches: (i) tools
that require the re-deployment of the whole system for each adaptation and (ii) tools that allow re-
deploying only the part of the system that accounts for the modification. In addition, main adaptation
features include auto-scaling (i.e., scaling in and out) and bursting (i.e., migration from one cloud to
another) capabilities.

In parallel, recent research work has also focused on the deployment and orchestration of IoT systems.
In the Deliverable 2.1, we have presented the state-of-the-art of the existing deployment and
orchestration approaches for IoT (see Appendix A), including our analysis on how deployment and
orchestration approaches support the adaptation enactment aspect: monitoring, run-time adaptation,
shared access to resources, which we define as follow:

− Monitoring is a key activity to reason on the state of a system and for controlling and managing
hardware as well as software infrastructures [86]. Monitoring probes are used to deliver
information and indicators characterizing the system and the context in which it is running. The
purpose of the monitoring can be multiple. In this study we identify the following: (i) measuring
QoS of the system, (ii) capturing the status and health of a deployment, (iii) depicting the state
of the environment, and (iv) observing the execution flow of the system, for instance for
debugging purpose. On the one side, it is a key tool for controlling and managing hardware and
software infrastructures; on the other side, it provides information and Key Performance
Indicators (KPIs) for both platforms and applications.

9 http://puppet.io
10 http://chef.io
11 https://cfengine.com
12 https://www.opentosca.org
13 https://cloudify.co
14 https://brooklyn.apache.org
15 https://kubernetes.io
16 https://resin.io
17 https://projects.eclipse.org/proposals/iofog

http://puppet.io/
http://chef.io/
https://cfengine.com/
https://www.opentosca.org/
https://cloudify.co/
https://brooklyn.apache.org/
https://kubernetes.io/
https://resin.io/
https://projects.eclipse.org/proposals/iofog

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 32

− Adaptation: there are two main approaches for dynamic adaptations [87]: (i) parametric
adaptation and (ii) compositional adaptation. Parametric adaptation allows modifying the
system’s behaviour by tuning parameter values. This type of adaptation requires the adaptation
parameters to be defined at design-time. By contrast with parametric adaptation, compositional
adaptation allows the “hot” deployment and binding of software components that were not
necessarily foreseen before the initial deployment of the system. It is worth noting that both
types of adaptation can be seamlessly combined. Orchestration and deployment tools can
support these two types of adaptation for modifying: (i) the application itself (e.g., replacing
one software component by another) and (ii) its infrastructure (e.g., bursting from one cloud to
another).

− Shared access to resources. Because IoT systems may involve actuators it is important to control
the impact these actuators can have on the physical world and to manage conflicting actuation
requests. More generally, this applies to the management of shared accesses to resources, which
can be of two types: (i) direct concurrent access to resources (e.g., several entities accessing to
the same service/actuator) or (ii) indirect shared access to a resource (e.g., actuators from
different applications are modifying the temperature with possibly conflicting goals) [88].

As part of the results, Figure 17 shows that few out of 69 primary studies (Appendix A) provide
advanced supports such as monitoring, run-time adaptation, shared access to resources. It is worth noting
that the approaches supporting both orchestration and deployment are more likely to support more
advanced features such as monitoring and run-time adaptation (13, 12) than the approaches that solely
support only deployment (9, 8) or orchestration (6, 7). Shared access to resources is a rare feature in the
existing approaches. As discussed in Appendix A , the existing primary studies are still quite immature
in the technical aspects of deployment and orchestration at IoT devices level such as bootstrap, and
network specification supports. A bootstrap is a basic executable program on a device, or a run-time
environment, which the system in charge of the deployment relies on (e.g., Docker). This aspect relates
to the specificity of a solution and its dependency to particular technologies [89]. The primary studies
are also immature in addressing trustworthy aspects and advanced supports, such as Adaptation
enactment, which we aim to address with our Generation and Deployment of Smart IoT Systems
(GeneSIS) framework.

Figure 17: Advanced supports mentioned by the existing deployment and orchestration approaches

To analyse deeper in technical details, we selected 17 key studies (see Table 8) out of 69 primary studies
that propose both deployment and orchestration for IoT. Table 5 shows the 10 key deployment and
orchestration studies for IoT [87-97] that have mentioned supporting for the adaptation of the deployed
IoT (Ada. column). After analysing these 10 studies in detail, we find that most of the adaptation in
these approaches (six approaches) is of type Compositional. It is worth noting that both types of
adaptation can be seamlessly combined. Indeed, we found three studies that have both types of
adaptation, i.e., orchestration and deployment tools can support these two types of adaptation for
modifying: (i) the application itself (e.g., replacing one software component by another) and (ii) its
infrastructure (e.g., bursting from one cloud to another).

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 33

Table 5: How the deployment and orchestration approaches for IoT address the trustworthy and advanced support aspects.

Table 5 also shows that shared access to resources is indeed a rare feature in the existing approaches
because only two studies [S9, S14] have mentioned this feature. Even so, these two approaches have not
gone further to provide real technical solutions. This is a hard problem that requires more extensive
research work (addressed in D2.1). The uncertain, dynamic, and partially known nature of the physical
environment makes it very difficult to assess at run-time the conformity of the effects of actions in this
environment with deterministic models (3.3).

Three studies ARCADIA [S2], Foggy [S16], and WComp [S9] that mention monitoring support also
provide adaptation support. ARCADIA [S2] and Foggy [S16] have provided technical details of their
monitoring approaches, such as the Resource Monitor module of Foggy can monitor the resource usage
and dynamically adapt container placement, whilst ARCADIA [S2] monitors the application to trigger
lifecycle management actions (such as relocation, scaling, and termination). WComp [S9] simply
monitors the appearance and disappearance of smart things in the environment, and then allows to
automatically and dynamically compose multiple applications sharing common services according to
the context evolution. Among the approaches that have adaptation support without monitoring, the
purposes of adaptation vary. For example, Calvin can update the actor placements and auto-scale to
handle a varying workload or to replicate actors onto the available runtimes. TOSCA-BMWi [S17]
leverages the OSGi framework Equinox, which allows to add and start new plugins, even during the
runtime of the service bus. Some other approaches provide adaptation support for dynamic orchestration
such as FogTorch [S1], SoPIoT [S10], Cloud4IoT [S12], BeC3 [S5] and D-LITE [S4]. SAaaS [S6] does
not touch trustworthiness aspects and monitoring, adaptation, or shared access to resource at all.

About half of the studies (eight out of 17) have provided tool support for full automation in deployment
and orchestration process. Another half have semi-auto level in tool support, e.g., the bootstraps cannot
be installed automatically. Only one study (by Verba etal. [S15]) has manual level in tool support, which
means the tool has not been implemented but only the tool framework proposed.

5.1.2 Requirements for Adaptation enactment
In this section, we first present the high-level requirements that will drive the development of the
mechanism to enact adaptation. Then Table 6 introduces more concrete requirements from WP3 for the
GeneSIS run-time engine.

− Abstraction and Infrastructure independence: GeneSIS shall provide a domain-specific
language to describe the orchestration and deployments of SIS over IoT, edge and cloud
infrastructures in both a device- and platform-independent and -specific way. In addition,
GeneSIS shall provide a continuously up-to-date, abstract representation of the running system.
This facilitates the reasoning, simulation, and validation of operation activities.

− Automatic deployment and dynamic adaptation: From a GeneSIS deployment model,
GeneSIS shall support the fully automatic deployment of SIS over IoT, edge and cloud
resources. In addition, the deployment of a system should be dynamically adaptable with
minimal impact over the running system (i.e., only the necessary part of the system should be

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 34

adapted). The deployment and adaptation API exposed to the users should be technology
agnostic and as much as possible device- and platform-independent.

Table 6: WP3 Requirements for GeneSIS

ReqID Requirement Description

R1 Scalability GeneSIS should be able to deploy SIS involving hundred
sensors/actuators.

R2 Scope
GeneSIS should be able to deploy SIS involving IoT (e.g.,
Arduino board), edge (e.g., Raspberry Pi) and cloud
infrastructures (e.g., Amazon EC2).

R3 Scope
GeneSIS should be able to deploy SIS on specific hosts using at
least SSH connection, container technologies (e.g., Docker), and
serial port (e.g., for Arduino boards)

R4 Adaptation/Trustworthiness
GeneSIS should be able to update (install new version of a
software node) software components deployed on IoT, edge, and
cloud infrastructure.

R5 Adaptation/Trustworthiness GeneSIS should ensure that the “adapted software” still properly
interacts with the rest of the system.

R6 Monitoring
GeneSIS should provide and deploy the necessary mechanisms to
monitor the deployment and the health of a SIS. Moreover, when
a ThingML program will be deployed, its execution flow should
be monitored.

R7 Adaptation/Trustworthiness
GeneSIS should be able to migrate software specified using
ThingML from one host to another, including between the IoT,
edge and cloud spaces.

R8 Trustworthiness GeneSIS should be able to deploy trustworthiness mechanisms
defined by WP4 enablers.

R9 Scope GeneSIS should offer an API to trigger a deployment/adaptation
from a new GeneSIS deployment model

R10 Scope GeneSIS should offer an API to trigger high level adaptation
actions (i.e., update software, migrate software, deploy software)

In the following section, we first present the current initial conceptual design of the GeneSIS run-time
engine before we introduce future work.

5.1.3 Conceptual design of Adaptation enactment
GeneSIS includes: (i) a domain specific modelling language to model the orchestration and deployment
of Smart IoT Systems across the IoT, edge and cloud spaces; and (ii) a run-time environment to enact
and adapt their actual orchestration and deployment. In the following, we first introduce a simple
illustrative example that we use in the rest of the section to detail the conceptual design of the GeneSIS
execution engine. Please note that the description of the GeneSIS modelling language can be found in
deliverable D2.1.

5.1.3.1 Illustrative example
SensAct is a company delivering application for smart building that connects IoT sensors and actuators
to analytics services running in the cloud. SensAct must develop and deploy a new SIS in a house already
equipped with some sensors and actuators facilitating dynamic control of blinds and lights with
controllable windows and heating system. The new system should maximize exploitation of daylights
and regulate the in-door temperature whilst minimizing the energy consumption. A purposely simplified
version of the part of the system related to the control of the blinds is depicted in Figure 18. In short, a
RFXtrx433E Transceiver is used to control the blinds as well as to receive temperature and humidity
metrics from probes installed in different locations of the house. This device is plugged to a Raspberry
PI (called RaspberryPI2 in Figure 18) via a USB port. The latter is running a software service responsible
for managing the access to the blinds. An Arduino with a screen is used to display (i) the temperature in
the house or (ii) an alarm message in case one of the blinds is not responding. In addition, it is equipped

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 35

with a button to close or open all the blinds. This Arduino is plugged via serial port to a second Raspberry
PI (called RaspberryPi in Figure 18). The latter is hosting two software services to (i) manage the
accesses to the Arduino and (ii) upload all data from the sensors and actuators in a data store running on
Amazon EC2.

Figure 18: Illustrative example

5.1.3.2 The Models@Runtime pattern
The GeneSIS run-time environment consumes a GeneSIS deployment model and, from it, computes
how to deploy or adapt the IoT system before actually enacting this deployment or adaptation. GeneSIS
thus leverage model-driven engineering techniques. Model-Driven Engineering (MDE) techniques have
shown to be effective in supporting design activities [101]. MDE is a branch of software engineering
which aims at improving the productivity, quality and cost-effectiveness of software development by
shifting the paradigm from code-centric to model-centric. Models and modelling languages as the main
artefacts of the development process enable developers to work at a higher level of abstraction rather
than at the level of implementation details.

However, as stated in [102], applying the classical MDE approach for software evolution would be
impractical. Indeed, this would typically result in generating the new solution, stopping the running
system before replacing it by the new one, this in contrast with common expectations for Cloud services
to have more or less 100% up-time. To address this issue, the Models@Runtime approach has emerged.

Models@Runtime [102] is an architectural pattern for dynamic adaptive systems that leverage models
as executable artefacts that can be applied to support the execution of the system.
Thus, Models@Runtime can be applied to reduce the developer-operator gap by providing a unique
model-based representation of the applications that can be applied for both design- and run-time
activities. As depicted in Figure 19, Models@Runtime enables to provide abstract representations of the
underlying running system, which facilitates reasoning, analysis, simulation, and adaptation. A change
in the running system is automatically reflected in the model of the current system. Similarly, a
modification to this model is enacted on the running system on demand. This causal connection enables
the continuous evolution of the system with no strict boundaries between design-time and run-time
activities.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 36

Figure 19: The Models@Runtime pattern

Exploiting Models@Runtime for continuous deployment typically result in the following process. A
DevOps team can specify a model of the deployment of its application (typically exploiting a domain-
specific language) and thus automatically enact this deployment into a test environment. The team can
therefore benefit from this test environment to tune its development and redeploy it automatically. Any
change made to the deployment model will be enacted on demand on the running system whilst its status
will be reflected in the model providing useful feedback. Once a new release ready, the team can tune
this model to maintain and manage the running system. This approach fits well with the DevOps
principles as the model used to specify the deployment of the system is enriched after deployment with
run-time information thus providing developers with feedback about the operation of the system in the
language they are familiar with.

The GeneSIS deployment engine implements the Models@Runtime pattern to support the dynamic
adaptation of a deployment with minimal impact on the running system.

5.1.3.3 The GeneSIS run-time environment
From a deployment model specified using the GeneSIS modelling language (see D2.1), the GeneSIS
run-time environment is responsible for: (i) deploying the software artefacts, (ii) ensuring
communication between them, (iii) provisioning cloud resources, and (iv) monitoring the status of the
deployment.

Figure 20 depicts the architecture envisioned for the GeneSIS run-time environment. It can be divided
into two main elements: (i) the facade and (ii) the deployment engine. At the time of writing this
document only a first version of the deployment engine has been implemented.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 37

Figure 20: Architecture of the GeneSIS execution environment

The facade provides a common way to programmatically interact with the GeneSIS execution engine
via a set of three APIs. The monitoring API offer mechanisms for remote third parties (e.g., reasoning
engines) to observe the status of a system. Third parties can either retrieve the whole GeneSIS model of
the running system enriched with run-time information or subscribe to a notification mechanism. For
the latter, the communication is achieved using the WebSocket protocol18, which enables light-weight
communications. We have defined the standard Meta Object Facility (MOF) reflection modifications as
the primitive notification events, which are encoded as plain text.

The high-level commands API exposes a pre-defined set of high-level commands that avoid direct
manipulation of the models (i.e., the model is automatically updated when the command is triggered).
At the current moment, this API only includes a Migrate command that provides initial support for the
migration of a software component from one host to another. Finally, the model manipulation API
allows atomic MOF-level modifications.

GeneSIS follows a declarative deployment approach. From the specification of the desired system state,
which captures the needed system topology, the deployment engine computes how to reach this state. It
is worth noting that the deployment engine may not always compute optimal plans. As a result, the
interactions between the facade and the deployment engine via GeneSIS models.

Our engine is a typical implementation of the Models@Runtime pattern. When a target model fed the
deployment engine, it is compared (see Diff in Figure 20) with the GeneSIS model representing the
running system. Finally, the adaptation engine enacts the adaptation (i.e., the deployment) by modifying
only the parts of the system necessary to account for the difference and the target GeneSIS model
becomes the current GeneSIS model.

A deployment process typically consists in the following steps:
1. Check infrastructure: This step consists in checking if the hosts specified in the deployment

model are reachable (e.g., is the docker remote API accessible at the address specified in the
deployment model). For cloud resources, the objective is to check if the API offered by the
cloud provider can be accessed.

2. Provision and instantiate resource: In the case of cloud solutions, this step consists in
provisioning the cloud resources based on few constraints (e.g., min CPU, min Disk, min RAM)
and running the proper execution environment (i.e., virtual machine image) as specified in the
deployment model. We use CloudMF [103] for this. For container technologies, this step

18 http://www.websocket.org/

http://www.websocket.org/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 38

consists in pulling the image of the container and running it with the set up specified in the
deployment model (e.g., access to file system, specifying open ports).

3. Installation and configuration: This step consists in running scripts and commands to
configure and install extra software on the host. This includes ensuring that the software
components that form the deployment topology can communicate with each other.

4. Start: This step consists in starting the deployed software.

It is not always possible for the GeneSIS deployment engine to directly deploy software on all hosts.
Indeed, tiny devices do not always have access to Internet or even the necessary facilities for remote
access (in such case access to Internet is typically granted via a gateway) and for specific reasons (e.g.,
security) the deployment of software components can only be performed via a physical connection (e.g.,
serial port). In such case, the actual action of deploying the software on the device has to be delegated
to the gateway physically connected to the device. Within our example, this is the case of the Arduino
device whose software code can only be updated via the RaspberryPi gateway. The GeneSIS
deployment agent aims at addressing this issue.

In future work the objective is to continue developing GeneSIS following the conceptual design
introduced in this deliverable. In addition, we will also consider working on aspects related to the
development of a SIS. In particular, the development and operation of applications running on IoT
devices such as Arduino boards is typically challenging as it is not always possible to access to the logs
or to the systems output. As future work we plan to extend ThingML and the deployment of
ThingML programs via GeneSIS with the necessary mechanisms to enable the remote debugging
of ThingML programs as well as the run-time monitoring of its execution flow. One of the
requirements should be to minimize the impact of such monitoring facilities on the performances of the
host device, possibly delegating part of the work to more powerful resources.

GeneSIS will provide the link between the adaptation engines and the running system. In addition, some
of the other tools developed within WP3 will interact with each other with the aim to provide extended
capabilities.

5.2 Behavioural Drift Analysis as input for Online Learning
Reinforcement Learning (RL) techniques are used in the Online-Learning tool. RL field of temporal
difference learning works well in known and rather small state spaces: (1) Through “sampling”
(experimental behaviour) the agent gathers information about immediate rewards for performing certain
actions in certain states; (2) Through bootstrapping the expected future reward can be approximated
(based on the values of future states; on- and off-policy needs to be differentiated here).

At some point, the values of states do not change anymore. Convergence is guaranteed for a suitable
selection of learning parameters (e.g., in Reinforcement Learning, the e of the e-greedy policy is
continuously decreased), so that less experience is explored, and focus lies on exploitation of knowledge
(optimal behaviour). So, if the environment is stationary, this means that the learning process converges
towards an optimal policy that needs to be exploited.

The main problem is that environment in the setting of IoT systems typically is non-stationarity. The
environment in the SIS setting may continuously change over time. Reasons for such changes may
include sensors becoming (un-)available during system operation to obtain environment information,
the availability of other IoT systems to interact and cooperate with, as well as the amount and quality of
data that may be obtained. So, online learning needs to become aware of such changes (drifts) in the
environment in order to, for instance, adjust the learning parameters so that more exploration takes place
in order to be able to capture the environment changes, such that rewards converge towards the new
environmental behaviour. The problem is how to detect such changes in the environment. The
behavioural drift analysis tool could be explored as a source to trigger a re-parametrization of the Online-
Learning tool. A behavioural drift of the system may indicate that the environment has changed and
thereby that this changed environment has to be explored by Online Learning.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 39

5.3 Root-Cause Analysis as input for Online Learning
Root Cause Analysis (RCA) provides evidence about system nodes deviating from expected quality,
such as performance. RCA thereby allows pin-pointing the system components or system functions that
are the actual culprits for a deviation of system quality.

The information from RCA may serve as additional information to better guide the Online Learning
process. As listed above, one of the requirements for the Online Learning tool is to achieve fast
convergence. Knowing which of the functions are the culprits in quality problems may help to speed up
learning. As an extreme measure, one may, for instance, exclude these culprit functions from the set of
actions explored by online learning, thereby avoiding known quality problems. Alternatively, one may
prioritize the actions based on the severity of the root cause, thereby providing a more fine-grained input
to Online Learning.

5.4 Interrelationships between Root-Cause Analysis and
Behavioural Drift Analysis

Behavioural Drift Analysis (BDA) can be used in conjunction with Root Cause Analysis (RCA) in a
couple of ways. The first one is as a provider of evidences (an evidence in this case is the terminology
used to describe anomalous events or conditions in a monitored component). Since BDA output is the
degree of satisfaction of the observed behaviour with respect to the one expected by the model,
deviations are potential indicators of anomalous behaviour that can be used by the RCA to enrich its
analysis.

The other use is related to explainability and transparency. When evidences come from very simple
anomaly detection mechanisms, it is trivial to provide information to the user on why a specific evidence
was triggered. For instance, in the most basic anomaly detectors, which are threshold-based, it is easy
for the user to understand that the evidence is there because the monitored signal went over/under a
given threshold. However, with much more sophisticated techniques like BDA, it is desirable that the
user could explore the rationale behind the evidences provided. For that reason, when a user is interested
in having an explanation of the evidence while performing RCA, BDA could provide a comparison of
the observed behaviour with respect to the expected one that would explain the degree of satisfaction
output by the BDA. The BDA could also provide models corresponding to the drifted behaviour which
could help developer by comparing the new model to the previous one.

In future work the objective is to strengthen the collaboration and explore other possibilities of
exploiting BDA and RCA together.

6 Conclusion and next steps
WP3 aims at developing enablers for the operational part of the DevOps process. WP3 will provide
enablers that provide IoT systems with capabilities to (i) monitor their status, (ii) indicate whether they
behave as expected or not, (iii) identify the origin of the problem, and (iv) automatically perform typical
operation activities (including self-adaptation of the systems). The main focus of the document is the
studies performed on the state-of-the-art on the following topics related to the aforementioned
capabilities: online learning, behavioural drift analysis, root-cause analysis and the support for self-
adaptation of SIS.

For each study, a rigorous analysis of the state-of-the-art is conducted to define the requirements. WP3
will provide the following enablers: online learning, behavioural drift analysis and root-cause analysis.
A conceptual design is proposed based on the identified requirements.

The next steps will be devoted to implement the enablers, with the help of the defined conceptual design
of each enabler, keeping in mind the defined requirements.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 40

In the following annexes, further information about the systematic mapping study and a systematic
literature review about Orchestration and Deployment are shown. Details about these specific topics are
in D2.1.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 41

Appendix A A systematic mapping study of
deployment or orchestration approaches for IoT

All the details are in the technical report SMS_Depo4IoT.pdf, which is attached with this deliverable.
Table 7 gives the full list of the primary studies of the SMS.

Table 7. The list of the primary Depo4IoT studies in the SMS

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 42

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 43

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 44

Appendix B Advances in deployment and
orchestration approaches for IoT -A systematic
review

All the details are in the technical report SLR_Depo4IoT.pdf, which is attached with this deliverable.

Table 8 shows the list of primary studies of the SLR.

Table 8: The primary deployment and orchestration studies of the SLR.

Year Study Title* PV
S1 2017 FogTorch [90] QoS-Aware Deployment of IoT Applications Through the Fog J
S2 2017 ARCADIA [91] A Middleware for Mobile Edge Computing J
S3 2017 Chen et al. [92] A Dynamic Module Deployment Framework for M2M

Platforms
C

S10 2017 SoPIoT [104] A Novel Service-Oriented Platform for the Internet of Things C
S11 2017 Calvin [93] Calvin Constrained: A Framework for IoT Applications in

Heterogeneous Environments
C

S14 2017 Niflheim [105] Niflheim: An end-to-end middleware for applications on a
multi-tier IoT infrastructure

C

S15 2017 Verba et al. [106] Platform-as-a-service gateway for the Fog of Things J
S16 2017 Foggy [94] Foggy- A Framework for Continuous Automated IoT

Application Deployment in Fog Computing
C

S17 2017 TOSCA-BMWi
[95]

A TOSCA-based Programming Model for Interacting
Components of Automatically Deployed Cloud and IoT

Applications

C

S12 2016 Cloud4IoT [96] Cloud4IoT: A Heterogeneous, Distributed and Autonomic
Cloud Platform for the IoT

C

S7 2015 D-NR [97] Developing IoT Applications in the Fog: a Distributed
Dataflow Approach

C

S9 2015 WComp [98] A Generic Service Oriented Software Platform to Design
Ambient Intelligent Systems

C

S13 2015 xWoT [107] A component-based approach for the Web of Things W
S5 2014 BeC3 [100] BeC3: Behaviour Crowd Centric Composition for IoT

applications
J

S8 2014 glue.things [108] glue.things - a Mashup Platform for wiring the Internet of
Things with the Internet of Services

W

S6 2013 SAaaS [109] Application deployment for IoT: An infrastructure approach C
S4 2011 D-LITE [99] D-LITE: Distributed logic for internet of things services C

PV: Publication venue; J: Journal; C: Conference; W: Workshop; *: Sorted by year of publication

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 45

References
1. Sutton, R.S. and A.G. Barto, Reinforcement learning: An introduction. 1998: MIT press.
2. Porter, B. and R. Rodrigues Filho. Losing Control: The Case for Emergent Software Systems

Using Autonomous Assembly, Perception, and Learning. in Self-Adaptive and Self-Organizing
Systems (SASO), 2016 IEEE 10th International Conference on. 2016. IEEE.

3. Tesauro, G., et al., On the use of hybrid reinforcement learning for autonomic resource
allocation. Cluster Computing, 2007. 10(3): p. 287-299.

4. Amoui, M., et al. Adaptive action selection in autonomic software using reinforcement learning.
in Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth International Conference on.
2008. IEEE.

5. Kim, D. and S. Park. Reinforcement learning-based dynamic adaptation planning method for
architecture-based self-managed software. in Software Engineering for Adaptive and Self-
Managing Systems, 2009. SEAMS'09. ICSE Workshop on. 2009. IEEE.

6. Barrett, E., E. Howley, and J. Duggan, Applying reinforcement learning towards automating
resource allocation and application scalability in the cloud. Concurrency and Computation:
Practice and Experience, 2013. 25(12): p. 1656-1674.

7. Jamshidi, P., et al. Fuzzy self-learning controllers for elasticity management in dynamic cloud
architectures. in Quality of Software Architectures (QoSA), 2016 12th International ACM
SIGSOFT Conference on. 2016. IEEE.

8. Jamshidi, P., et al. Transfer learning for improving model predictions in highly configurable
software. in Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. 2017. IEEE Press.

9. Porter, B., Defining emergent software using continuous self-assembly, perception, and
learning. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 2017. 12(3): p.
16.

10. Sharifloo, A.M., et al. Learning and evolution in dynamic software product lines. in Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2016 IEEE/ACM 11th
International Symposium on. 2016. IEEE.

11. Richter, M.M. and R.O. Weber, Case-based reasoning. 2016: Springer.
12. Qian, W., et al., Rationalism with a dose of empiricism: combining goal reasoning and case-

based reasoning for self-adaptive software systems. Requirements Engineering, 2015. 20(3): p.
233-252.

13. Zhao, T., et al. A Reinforcement Learning-based Framework for the Generation and Evolution
of Adaptation Rules. in Autonomic Computing (ICAC), 2017 IEEE International Conference
on. 2017. IEEE.

14. Ramirez, A.J., et al., Plato: a genetic algorithm approach to run-time reconfiguration in
autonomic computing systems. Cluster Computing, 2011. 14(3): p. 229-244.

15. Moustafa, A. and M. Zhang. Learning efficient compositions for QoS-aware service
provisioning. in 2014 IEEE International Conference on Web Services (ICWS). 2014. IEEE.

16. Wang, H., et al., Integrating reinforcement learning with multi-agent techniques for adaptive
service composition. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 2017.
12(2): p. 8.

17. van Otterlo, M. and M. Wiering, Reinforcement learning and markov decision processes, in
Reinforcement Learning. 2012, Springer. p. 3-42.

18. Laprie, J.-C., Dependability: Basic concepts and terminology, in Dependability: Basic Concepts
and Terminology. 1992, Springer. p. 3-245.

19. Gao, Z., C. Cecati, and S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques—
Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on
Industrial Electronics, 2015. 62(6): p. 3757-3767.

20. Kavulya, S.P., et al., Failure diagnosis of complex systems, in Resilience assessment and
evaluation of computing systems. 2012, Springer. p. 239-261.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 46

21. Bertolino, A., et al. Dependability and performance assessment of dynamic connected systems.
in International School on Formal Methods for the Design of Computer, Communication and
Software Systems. 2011. Springer.

22. Delgado, N., A.Q. Gates, and S. Roach, A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Transactions on software Engineering, 2004. 30(12): p. 859-872.

23. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM computing
surveys (CSUR), 2009. 41(3): p. 15.

24. Pimentel, M.A., et al., A review of novelty detection. Signal Processing, 2014. 99: p. 215-249.
25. Gupta, M., et al., Outlier detection for temporal data. Synthesis Lectures on Data Mining and

Knowledge Discovery, 2014. 5(1): p. 1-129.
26. Malhotra, P., et al. Long short term memory networks for anomaly detection in time series. in

Proceedings. 2015. Presses universitaires de Louvain.
27. Goh, J., et al. Anomaly detection in cyber physical systems using recurrent neural networks. in

High Assurance Systems Engineering (HASE), 2017 IEEE 18th International Symposium on.
2017. IEEE.

28. Vodenčarević, A., et al. Using behavior models for anomaly detection in hybrid systems. in
Information, Communication and Automation Technologies (ICAT), 2011 XXIII International
Symposium on. 2011. IEEE.

29. Lipton, Z.C., The mythos of model interpretability. arXiv preprint arXiv:1606.03490, 2016.
30. Mascaro, S., A. Nicholson, and K. Korb. Anomaly detection in vessel tracks using Bayesian

networks. in Proceedings of the 8th Bayesian Modeling Applications Workshop. 2011. Citeseer.
31. Loy, C.C., T. Xiang, and S. Gong, Detecting and discriminating behavioural anomalies. Pattern

Recognition, 2011. 44(1): p. 117-132.
32. Lin, Q., et al. TABOR: A Graphical Model-based Approach for Anomaly Detection in Industrial

Control Systems. in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security. 2018. ACM.

33. Fraser, A.M., Hidden Markov models and dynamical systems. Vol. 107. 2008: Siam.
34. Al-ani, T., Hidden Markov models in dynamic system modelling and diagnosis, in Hidden

Markov models, theory and applications. 2011, InTech.
35. Park, D., et al. A multimodal execution monitor with anomaly classification for robot-assisted

feeding. in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on. 2017. IEEE.

36. Li, J., W. Pedrycz, and I. Jamal, Multivariate time series anomaly detection: A framework of
Hidden Markov Models. Applied Soft Computing, 2017. 60: p. 229-240.

37. Stefanidis, K. and A.G. Voyiatzis. An HMM-based anomaly detection approach for SCADA
systems. in IFIP International Conference on Information Security Theory and Practice. 2016.
Springer.

38. Lefebvre, D., Detection of Temporal Anomalies for Partially Observed Timed PNs.
Mathematical Problems in Engineering, 2017. 2017.

39. Rocher, G., J.-Y. Tigli, and S. Lavirotte, Probabilistic Models Toward Controlling Smart-*
Environments. IEEE Access, 2017. 5: p. 12338-12352.

40. Rocher, G., et al. A Possibilistic I/O Hidden Semi-Markov Model For Assessing Cyber-Physical
Systems Effectiveness. in International Conference on Fuzzy Systems. 2018.

41. Webb, G.I., et al., Characterizing concept drift. Data Mining and Knowledge Discovery, 2016.
30(4): p. 964-994.

42. Itti, L. and P. Baldi, Bayesian surprise attracts human attention. Vision research, 2009. 49(10):
p. 1295-1306.

43. Storck, J., S. Hochreiter, and J. Schmidhuber. Reinforcement driven information acquisition in
non-deterministic environments. in Proceedings of the international conference on artificial
neural networks, Paris. 1995. Citeseer.

44. Bause, F. and P. Kritzinger, Stochastic Petri Nets. Verlag Vieweg, Wiesbaden, 1996. 26.
45. Benveniste, A., E. Fabre, and S. Haar, Markov nets: probabilistic models for distributed and

concurrent systems. IEEE Transactions on Automatic Control, 2003. 48(11): p. 1936-1950.
46. Cardoso, J., R. Valette, and D. Dubois, Possibilistic petri nets. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 1999. 29(5): p. 573-582.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 47

47. Morrison, J.P. Flow-based programming. in Proc. 1st International Workshop on Software
Engineering for Parallel and Distributed Systems. 1994.

48. Solé, M., et al., Survey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546, 2017.

49. łgorzata Steinder, M. and A.S. Sethi, A survey of fault localization techniques in computer
networks. Science of computer programming, 2004. 53(2): p. 165-194.

50. Agarwal, P. and A.P. Agrawal, Fault-localization techniques for software systems: A literature
review. ACM SIGSOFT Software Engineering Notes, 2014. 39(5): p. 1-8.

51. Lazarova-Molnar, S., H.R. Shaker, and N. Mohamed. Fault detection and diagnosis for smart
buildings: State of the art, trends and challenges. in Big Data and Smart City (ICBDSC), 2016
3rd MEC International Conference on. 2016. IEEE.

52. Katipamula, S. and M.R. Brambley, Methods for fault detection, diagnostics, and prognostics
for building systems—a review, part I. Hvac&R Research, 2005. 11(1): p. 3-25.

53. Feng, Z., M. Liang, and F. Chu, Recent advances in time–frequency analysis methods for
machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal
Processing, 2013. 38(1): p. 165-205.

54. Qin, L., X. He, and D. Zhou, A survey of fault diagnosis for swarm systems. Systems Science &
Control Engineering: An Open Access Journal, 2014. 2(1): p. 13-23.

55. Isermann, R., Model-based fault-detection and diagnosis–status and applications. Annual
Reviews in control, 2005. 29(1): p. 71-85.

56. Hwang, I., et al., A survey of fault detection, isolation, and reconfiguration methods. IEEE
transactions on control systems technology, 2010. 18(3): p. 636-653.

57. Lanigan, P.E., et al., Diagnosis in automotive systems: A survey. Last accessed Sept, 2011. 10:
p. 2011.

58. Mohammadpour, J., M. Franchek, and K. Grigoriadis, A survey on diagnostic methods for
automotive engines. International Journal of Engine Research, 2012. 13(1): p. 41-64.

59. Patton, R., Fault detection and diagnosis in aerospace systems using analytical redundancy.
Computing & Control Engineering Journal, 1991. 2(3): p. 127-136.

60. Bruce, G., B. Buchanan, and E. Shortliffe, Rule-based expert systems: the MYCIN experiments
of the Stanford Heuristic Programming Project. 1984, Reading, Mass: Addison-Wesley.

61. Mahandeka, D.S. and D.M. Rosyid, Fault Tree Analysis for Investigation on the Causes of
Project Problems. Procedia Earth and Planetary Science, 2015. 14: p. 213-219.

62. Alaeddini, A. and I. Dogan, Using Bayesian networks for root cause analysis in statistical
process control. Expert Systems with Applications, 2011. 38(9): p. 11230-11243.

63. Schoenfisch, J., et al., Using abduction in markov logic networks for root cause analysis. arXiv
preprint arXiv:1511.05719, 2015.

64. Korb, K.B. and A.E. Nicholson, Bayesian artificial intelligence. 2010: CRC press.
65. Stewart, R. and S. Ermon. Label-free supervision of neural networks with physics and domain

knowledge. in AAAI. 2017.
66. Velickovic, P., et al., Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
67. Yan, H., et al., G-rca: a generic root cause analysis platform for service quality management

in large ip networks. IEEE/ACM Transactions on Networking (TON), 2012. 20(6): p. 1734-
1747.

68. Yemini, S.A., et al., High speed and robust event correlation. IEEE communications Magazine,
1996. 34(5): p. 82-90.

69. Monacelli, L. and G. Reali, Evolution of the codebook technique for automatic fault
localization. IEEE Communications Letters, 2011. 15(4): p. 464-466.

70. Zheng, A.X., J. Lloyd, and E. Brewer, Failure Diagnosis Using Decision Trees, in Proceedings
of the First International Conference on Autonomic Computing. 2004, IEEE Computer Society.
p. 36-43.

71. Alves, J., et al., Brief survey on computational solutions for Bayesian inference. 2015.
72. Zheng, L., O. Mengshoel, and J. Chong, Belief propagation by message passing in junction

trees: Computing each message faster using gpu parallelization. arXiv preprint
arXiv:1202.3777, 2012.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 48

73. Lin, M., I. Lebedev, and J. Wawrzynek. High-throughput bayesian computing machine with
reconfigurable hardware. in Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays. 2010. ACM.

74. Kompella, R.R., et al. IP fault localization via risk modeling. in Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume 2. 2005.
USENIX Association.

75. Zasadzinski, M., V. Muntés-Mulero, and M.S. Simo. Actor based root cause analysis in a
distributed environment. in Software Engineering for Smart Cyber-Physical Systems (SEsCPS),
2017 IEEE/ACM 3rd International Workshop on. 2017. IEEE.

76. Zasadziński, M., et al., Fast root cause analysis on distributed systems by composing
precompiled bayesian networks. Proc. World Congr. on Engineering and Computer Science,
2016. 1: p. 464-469.

77. Domingos, P. and G. Hulten. Mining high-speed data streams. in Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining. 2000. ACM.

78. Hulten, G., L. Spencer, and P. Domingos. Mining time-changing data streams. in Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining. 2001. ACM.

79. Bifet, A. and R. Gavaldà. Adaptive learning from evolving data streams. in International
Symposium on Intelligent Data Analysis. 2009. Springer.

80. Petcu, D. Multi-Cloud: expectations and current approaches. in Proceedings of the 2013
international workshop on Multi-cloud applications and federated clouds. 2013. ACM.

81. Ferry, N., et al., CloudMF: Model-Driven Management of Multi-Cloud Applications. ACM
Transactions on Internet Technology (TOIT), 2018. 18(2): p. 16.

82. da Silva, A.C.F., et al. OpenTOSCA for IoT: automating the deployment of IoT applications
based on the mosquitto message broker. in Proceedings of the 6th International Conference on
the Internet of Things. 2016. ACM.

83. Brogi, A. and S. Forti, QoS-aware deployment of IoT applications through the fog. IEEE
Internet of Things Journal, 2017. 4(5): p. 1185-1192.

84. Carrega, A., et al., A middleware for mobile edge computing. IEEE Cloud Computing, 2017.
4(4): p. 26-37.

85. Chen, B.-L., et al. A Dynamic Module Deployment Framework for M2M Platforms. in Cloud
and Service Computing (SC2), 2017 IEEE 7th International Symposium on. 2017. IEEE.

86. Mehta, A., et al. Calvin Constrained—A Framework for IoT Applications in Heterogeneous
Environments. in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. 2017. IEEE.

87. Yigitoglu, E., et al. Foggy: a framework for continuous automated IoT application deployment
in fog computing. in 2017 IEEE International Conference on AI & Mobile Services (AIMS).
2017. IEEE.

88. Zimmermann, M., U. Breitenbücher, and F. Leymann. A TOSCA-based programming model for
interacting components of automatically deployed cloud and IoT applications. in Proceedings
of the 19th International Conference on Enterprise Information Systems (ICEIS). 2017.

89. Pizzolli, D., et al. Cloud4iot: A heterogeneous, distributed and autonomic cloud platform for
the iot. in Cloud Computing Technology and Science (CloudCom), 2016 IEEE International
Conference on. 2016. IEEE.

90. Giang, N.K., et al. Developing IoT applications in the fog: a distributed dataflow approach. in
Internet of Things (IOT), 2015 5th International Conference on the. 2015. IEEE.

91. Lavirotte, S., et al. A generic service oriented software platform to design ambient intelligent
systems. in Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on
Wearable Computers. 2015. ACM.

92. Cherrier, S., et al. D-lite: Distributed logic for internet of things services. in Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th International Conference on
Cyber, Physical and Social Computing. 2011. IEEE.

93. Cherrier, S., et al., BeC 3: behaviour crowd centric composition for IoT applications. Mobile
Networks and Applications, 2014. 19(1): p. 18-32.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.5, 31/10/2018 49

94. McKinley, P.K., et al., A taxonomy of compositional adaptation. Rapport Technique
numéroMSU-CSE-04-17, 2004.

95. Ruscio, D.D., R.F. Paige, and A. Pierantonio, Guest editorial to the special issue on Success
Stories in Model Driven Engineering. Sci. Comput. Program., 2014. 89(PB): p. 69-70.

96. Blair, G., N. Bencomo, and R.B. France, Models@ run. time. Computer, 2009. 42(10).
97. Ferry, N., et al. CloudMF: applying MDE to tame the complexity of managing multi-cloud

applications. in Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference on. 2014. IEEE.

98. O’Leary, N. and D. Conway-Jones, Node red-a visual tool for wiring the internet of things.
2017.

99. Harrand, N., et al. Thingml: a language and code generation framework for heterogeneous
targets. in Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. 2016. ACM.

100. Lee, H., et al. A novel service-oriented platform for the internet of things. in Proceedings of the
Seventh International Conference on the Internet of Things. 2017. ACM.

101. Small, N., et al. Niflheim: An end-to-end middleware for applications on a multi-tier IoT
infrastructure. in Network Computing and Applications (NCA), 2017 IEEE 16th International
Symposium on. 2017. IEEE.

102. Verba, N., et al., Platform as a service gateway for the Fog of Things. Advanced Engineering
Informatics, 2017. 33: p. 243-257.

103. Ruppen, A., et al. A component based approach for the Web of Things. in Proceedings of the
6th International Workshop on the Web of Things. 2015. ACM.

104. Kleinfeld, R., et al. glue. things: a Mashup Platform for wiring the Internet of Things with the
Internet of Services. in Proceedings of the 5th International Workshop on Web of Things. 2014.
ACM.

105. Distefano, S., G. Merlino, and A. Puliafito. Application deployment for IoT: An infrastructure
approach. in Global Communications Conference (GLOBECOM), 2013 IEEE. 2013. IEEE.

	Contents
	1 Introduction
	1.1 Context and objectives
	1.2 Achievements
	1.3 Structure of the document

	2 Online Learning for Adaptation Self-improvement of Smart IoT Systems
	2.1 State-of-the-art on Online Learning
	2.1.1 Reinforcement Learning
	2.1.2 Case-based Reasoning
	2.1.3 Search-based and Multi-Agent Learning

	2.2 Requirements for Online Learning enabler
	2.3 Conceptual design of Online Learning enabler

	3 Behavioural Drift Analysis of Smart IoT Systems
	3.1 State-of-the-art on Behavioural Drift Analysis of Smart IoT Systems
	3.1.1 Considered anomalies
	3.1.2 Anomaly detection problem
	3.1.3 Static modelling approaches
	3.1.3.1 Predictive Models
	3.1.3.2 Probabilistic Models
	3.1.3.3 Possibilistic Models

	3.1.4 Dynamic modelling approaches

	3.2 Requirements for Behavioural Drift Analysis enabler
	3.3 Conceptual design of Behavioural Drift Analysis enabler
	3.3.1 Stochastic behavioural drift observer modelling framework
	3.3.2 Behavioural drift observer synthesizer
	3.3.3 Deterministic Model Learning

	4 Root-Cause Analysis for Smart IoT Systems
	4.1 State-of-the-art on Root-Cause Analysis
	4.1.1 General framework for Root-cause analysis
	4.1.2 RCA for IoT

	4.2 Requirements for Root-Cause Analysis enabler
	4.3 Conceptual design of Root-Cause Analysis enabler

	5 Support and Interrelationships among Techniques for Agile Operation of Smart IoT Systems
	5.1 Adaptation Enactment as Support for Self-Adaptation
	5.1.1 State-of-the-art on Adaptation enactment
	5.1.2 Requirements for Adaptation enactment
	5.1.3 Conceptual design of Adaptation enactment
	5.1.3.1 Illustrative example
	5.1.3.2 The Models@Runtime pattern
	5.1.3.3 The GeneSIS run-time environment

	5.2 Behavioural Drift Analysis as input for Online Learning
	5.3 Root-Cause Analysis as input for Online Learning
	5.4 Interrelationships between Root-Cause Analysis and Behavioural Drift Analysis

	6 Conclusion and next steps
	Appendix A A systematic mapping study of deployment or orchestration approaches for IoT
	Appendix B Advances in deployment and orchestration approaches for IoT -A systematic review
	References

