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Executive Summary 
 

Deliverable D3.2 focuses on providing the first version of the different enablers of WP3 (namely the 

Online-Learning Enabler, Context Monitoring and Behavioural Drift Analysis Enabler and Root Cause 

Analysis Enabler as well as the Adaptation Enactment as support for Self-Adaptation). This document 

complements the deliverable of type OTHER by explaining the solutions that were developed in WP3. 

This includes the conceptual design of the solutions, as well as the technical details for the different 

enablers. The executable code of the enabler implementations is provided in the ENACT online repository 

(https://gitlab.com/enact). 
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In particular, for the online learning enabler, a 1st prototypical implementation of the enabler was 

provided by employing policy-based reinforcement learning as the underlying learning paradigm. A 

validation and demonstration of the enabler was done using the benchmark system Brownout RUBiS.  

 

For the context monitoring & behavioural drift analysis enabler, a first implementation of this enabler 

provides: (1) A tool for collecting contextual information and providing the streaming data for behavioural 

drift computation; (2) A first behavioural drift analyser (BDA) for apprehending the difference between 

expected and observed behaviour of the system. This first BDA is based on Gaussian Mixture Model of 

the observed behaviour.  

 

For the root cause analysis enabler, the implementation will include a preliminary database of anomalies 

(at least 3 patterns), the agent plugins for at least 2 agents and the system graph construction algorithm. I 

will be available during the following months.  

 

For the adaptation enactment (GeneSIS execution engine) enabler, the initial implementation of the 

orchestration and deployment enabler (modelling language and execution environment), supporting 

deployment over IoT, Edge and Cloud infrastructure is available. This enabler (aka. GeneSIS) provide 

initial support for the dynamic adaptation of the deployment of a SIS. A first version of its 

models@run.time engine is implemented and the GeneSIS execution engine expose a set of API for third-

parties to trigger an adaptation. 
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1 Introduction 

1.1 Context and objectives  
The operation of large-scale and highly distributed IoT system can easily overwhelm operation teams. 

Major challenges are to improve their efficiency and the collaboration with developer teams for rapid 

and agile evolution of the system. In particular, automated solutions for run-time operations are required 

in order to ensure timely reaction to problems and changes of the IoT system’s environment.  

WP3 aims to develop enablers for the operational part of the DevOps process (see Figure 1). WP3 thus 

will provide enablers that furnish the IoT systems with capabilities to (i) monitor their status, (ii) indicate 

when their behaviour is not as expected, (iii) identify the origin of the problem, and (iv) automatically 

perform typical operation activities (including self-adaptation of the systems). As it is impossible to 

anticipate all problems and environment situations systems may face when operating in open contexts, 

there is an urgent need for mechanisms that will automatically learn and update the operation and 

adaptation activities of Smart IoT Systems (SIS).  

  
Figure 1: Focus on the Ops of the DevOps cycle  

The three enablers developed by WP3 are:  

• Online Learning Enabler: Because anticipating all possible context situations that SIS may 

encounter during their operation is not possible, it is difficult for software developers to 

determine how a run-time adaptation of the system may impact the satisfaction of the system 

behaviour and of the interactions with the environment. To address this challenge, this enabler 

will apply online learning techniques to improve the way a SIS adapts during its operation. 

Online learning means that learning is performed at run-time, taking into account observations 

about the actual system execution and system context. Online learning incrementally updates 

the SIS’s knowledge base; e.g., its adaptation rules or the models based on which adaptation 

decisions are made.  

• Behavioural Drift Analysis Enabler: Because of the uncertain, dynamic, and partially known 

nature of the physical environment, it is very difficult or even illusory to assess at run-time the 

conformity of the effects of actions in this environment with deterministic models. This enabler 

will provide a set of observers to monitor the behavioural drift of SIS that may arise when 

operating in such open context. In addition, it will exploit the computed drift measure to 

dynamically adjust the behaviour of the system.  

• Root Cause Analysis Enabler:  When anomalous conditions start to arise in a complex system, 

determining which anomalies are related and to which part focus attention is crucial to reduce 

the mean time to resolution. Thus, the root-cause analysis enabler will try to sensibly group 

anomalies related to the same problem and compute likely culprits of that problem with the least 

amount of human involvement possible. Since the number of open incidents in a large 
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deployment can be large, it will as well prioritize the different grouped problems by potential 

impact, based on past experience. 

 

Deliverable D3.2 provides the initial version of the ENACT enablers. The executable code of the 

implementations is provided in the ENACT online repository (https://gitlab.com/enact) and a link to 

each subproject of each enabler is provided in section 3 together with an overview of the conceptual 

solution of each enabler, which builds a theoretical foundation for the implementations and a description 

of the prototype. Furthermore, a documentation on how to use the enabler is provided in the readme-

files of the subprojects in GitLab. Planned and already implemented communication between the 

different enablers are described in D5.2. This is the accompanying document of the software delivery 

of D3.2, providing descriptions of the set of enablers delivered. Below is the overview of the presented 

enablers: 

1.2 Achievements 
 

Objectives Achievements 

Provide 1st version of each enabler of WP3 

• Online Learning 

• Context Monitoring & Behavioural Drift 

Analysis 

• Root Cause Analysis 

Based on the theoretical foundations gained 

throughout the first half of the project we 

developed initial versions of the different 

enablers of WP3 and provided them in an online 

repository. The status and progress of each of 

these is described in Section 1.3. 

Provide description of conceptual solution of 

each enabler 

Based on the finding during the first half of the 

project we developed a conceptual solution for 

each enabler which laid the foundation for the 

corresponding enabler implementation. The 

status and progress of each of these is described 

in Section 1.3. 

Provide documentation We provided a documentation for each enabler 

stating how to use. The status and progress of 

each of these is described in Section 1.3. 

1.3 Status of the different enablers 
The following table gives a brief overview of WP3’s enablers and their current status: 

  

Enabler Status 

Online Learning 1st prototypical implementation of the enabler. 

Demonstration of the enabler has been done using 

Brownout RUBiS. The enabler is able to support 

the adjustment of a system parameter that 

influences the trade-off between two contrasting 

quality requirements during runtime. Possible 

interfaces with other enablers have been defined 

in D5.2. Development of REST API is ongoing. 

Demonstration of usability in use case (cf. D1.1) 

is pending. 
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Context Monitoring & Behavioural Drift 

Analysis 

A first implementation of this enabler provides: 

(1) A tool for collecting contextual information 

and  providing the streaming data for behavioural 

drift computation 

(2) A first behavioural drift analyser (BDA) for 

apprehending the difference between expected 

and observed behaviour of the system. This first 

BDA is based on Gaussian Mixture Model of the 

observed behaviour. 

Root Cause Analysis A first version of the RCA enabler is expected to 

be available during the following months. This 

implementation will include a preliminary 

database of anomalies (at least 3 patterns), the 

Agent plugins for at least 2 agents and the system 

graph construction algorithm. 

Adaptation enactment (GeneSIS execution 

engine) 

The initial implementation of the Orchestration 

and deployment enabler (modelling language and 

execution environment), supporting deployment 

over IoT, Edge and Cloud infrastructure. This 

enabler (aka. GeneSIS) provide initial support for 

the dynamic adaptation of the deployment of a 

SIS. A first version of its models@run.time 

engine is implemented and the GeneSIS 

execution engine expose a set of API for third-

parties to trigger an adaptation. Future work will 

focus first on extending these APIs with support 

for high level adaptation commands (e.g., 

software migration). 

 

1.4 Structure of the document 
The remainder of the document is structured as follows. After a brief introduction, Sections 2-4 provide 

the conceptual solutions for each of the enablers of WP3 and a description of the prototypical 

implementation of the enablers. Section 5 describes how the self-adaptation is supported by adaptation 

enactment. Section 6 concludes the document and gives a brief overview of planned next steps. 

 

mailto:models@run.time
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2 Online Learning for Adaptation Self-

improvement of Smart IoT Systems 

In this section the conceptual solution and the prototypical implementation of the online learning enabler 

is described. 

2.1 Conceptual solution 
A well-known reference model for self-adaptive systems is the MAPE-K model [1-3], which is depicted 

in Figure 1. Following this reference model, a self-adaptive software system can be logically structured 

into two main elements: the system logic (aka. the managed element) and the self-adaptation logic (the 

autonomic manager). 

 

 
Figure 1: MAPE-K reference model for self-adaptive systems (based on [1]) 

 

As shown in Figure 1, the self-adaptation logic can be further structured into four main conceptual 

activities that leverage a common knowledge base [4]. The knowledge base includes information about 

the managed system (e.g., encoded in the form of models at run time), its environment, and its adaptation 

goals and adaptation policies (e.g., expressed as rules). The four activities are concerned with monitoring 

the system logic and the system’s environment via sensors, analysing the monitoring data to determine 

the need for an adaptation, planning adaptation actions, and executing these adaptation actions via 

actuators, thereby modifying the system logic at run time. 

 

Figure 2 shows the basic reference model for reinforcement learning [5-7]. In this model, a so-called 

agent (i.e., system in our case) learns how to perform optimally in an unknown environment. 

 

 
Figure 2: Conceptual model of reinforcement learning (based on [7]) 

 

In general, reinforcement learning techniques allow solving sequential decision-making problems of an 

agent by learning the effectiveness of the agent’s actions through interactions with the agent’s 
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environment [7, 8]. At each point t, an agent observes the current state st of its environment. The agent 

then selects an action at, which may cause the environment to change to state st+1. In each environment 

state st, the agent receives feedback in the form of a reward rt. The goal of reinforcement learning is to 

learn an action-selection policy π that optimizes the agent’s cumulative (long-term) rewards. Depending 

how rewards are defined for the concrete learning task, the agent’s goal may be to maximize or minimize 

cumulative rewards. 

 

2.2 Online learning enabler using policy-based RL and MAPE-K 
Our overall approach is to enhance the MAPE-K loop with policy-based reinforcement learning. Below, 

we first explain how we conceptually integrate elements of the MAPE-K loop with elements of 

reinforcement learning, before providing a formalization and implementation of our approach. 

 

Finally, we explain the implementation our approach using a concrete policy-based reinforcement 

learning algorithm. 

 
Figure 3 shows the conceptual architecture of our approach and how the elements of policy-based 

reinforcement learning are integrated into the MAPE-K loop. 

 

 
Figure 3: Conceptual architecture of integrating policy-based reinforcement learning with the self-adaptation logic 

The overlapping area (dark-gray in Figure 3) shows how in our approach the action-selection of 

reinforcement learning takes the place of the analyze and plan activities of the MAPE-K reference 

model. In particular, the learned action-selection policy π takes the role of the knowledge base of the 

self-adaptive system. At run time the policy is used by the autonomic manager to select an adaptation 

action at based on the current state st, which is determined by the monitoring activity. 

This means action selection determines whether there is a need for an adaptation (given the current state) 

and plans (i.e., selects) the respective adaptation action to execute. 

As we explained before, the monitoring activity monitors the system logic and the system’s 

environment. This means that the state st may be determined using observations of both the system’s 

environment and the system logic itself. This is an important difference from the basic reinforcement 

learning model (as introduced in the beginning), where only observations from the agent’s environment 

are considered to determine the state st. 

As a result of an action at, the state may change to state st+1. This new state is used to trigger the 

learning process to deliver an updated policy πt+1. Input to the policy update are the new state st+1 
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together with the reward rt+1 obtained in the new state. In our architecture this reward is also computed 

by the monitoring activity, as this activity has access to all sensor information collected from the system 

and its environment. 

2.3 Formal background of the conceptual solution 
The sequential decision-making problem to be solved by reinforcement learning can be formalized as a 

Markov decision process, which defines the interactions between an agent and its environment in terms 

of states, actions, and rewards [7].  

A Markov decision processes is formally defined as MDP = (S, A, T, R) with 

− S being a set of environment states s ∈ S, 

− A being a set of possible actions a ∈ A that lead to a transition among environment states, i.e., 

from a state st to a successor state st+1, 

− T : S × A × S → [0, 1] being the transition probability among states with T (st, at, st+1) = 

Pr(st+1|st, at), which gives the probability that action at in state st will lead to a state st+1, 

− R : S × A× S → IR, a reward function which specifies what numerical reward the agent receives 

when performing a particular action at in a particular state st that leads to successor state st+1. 

  
The solution to a Markov decision process is a so-called optimal policy π, which maps states to actions, 

such that the future reward is maximized. More concretely this policy is defined as π : S × A → [0, 1], 

which gives the probability of taking action a in state s, i.e., π(s, a) = Pr(a|s). 

Policy-based reinforcement learning relies on a parametrized policy in the form πθ(s, a) = Pr(a s, θ), 

where θ IRd is a vector of the policy’s parameters. As an example, if the policy is represented as an 

artificial neural network, the weights of the network are the policy parameters [9]. The policy parameters 

can be learned via so called policy gradient methods. Policy gradient methods update the policy 

according to the gradient of a given objective function [7, 9], which can be based on the average reward 

per learning step 

Policy-based reinforcement learning does not rely on a value function for action selection and thus does 

not require quantization of the state space. The concrete action is selected via sampling over the 

probabilistic policy πθ. Because of this sampling and the probabilistic nature of the policy, policy-based 

reinforcement learning does not suffer from the exploration/exploitation dilemma and thus does not 

require manually fine-tuning the balance between exploitation and exploration. Exploration is 

automatically performed, because sampling over the probabilistic policy leads to some degree of random 

action selection. 

With respect to formalizing the self-adaptation problem as a Markov decision process, we know the set 

of possible actions A. These are the system’s adaptation actions, i.e., possible ways the system may be 

adapted using the system logic’s actuators. As an example, we may know which optional system features 

of a web application may be deactivated in case of performance problems. We also know the set of 

potential environment states S. That is, even if we do not know the exact environment states a system 

may face at run time (due to design time uncertainty in anticipating all potential environment changes), 

we at least know the typical state variables. As an example, even if we do not know the exact workload 

(and maybe not even the maximum workload) a web application may face, we can express a state 

variable workload w ∈ IN. 

In contrast, we do not know T due to design time uncertainty about how adaptation impacts on system 

quality. We thus employ a model- free variant of policy-based reinforcement learning, which does not 

require a model of the environment (i.e., known T) but can learn directly from interactions with the 

system’s environment. 

Finally, defining the reward function R depends on the concrete learning goal to achieve. We define a 

concrete reward function as part of our evaluation. 

 

To select a concrete policy-based reinforcement learning algorithm for our implementation, we need to 

consider that, from the point of view of reinforcement learning, self-adaptation is a continuing task. 

This means that the adaptation process cannot be naturally broken down into episodes, which start from 

file:///C:/Users/kelle/Downloads/MainPaper.docx
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an initial state s0 and terminate after a certain number of actions in a known terminal state [7]. The 

adaptation process goes on continually. Value-based reinforcement learning algorithms like Q-Learning 

and SARSA are well-suited for continuing learning tasks, because they use bootstrapping during the 

learning process. Bootstrapping means that the algorithms update the knowledge base after each time 

step t without waiting for a final outcome, i.e., without waiting for reaching a terminal state. Actor-critic 

algorithms are a variant of policy- based reinforcement learning algorithms that also use bootstrapping 

and thus are suited for continuing tasks and thus for self-adaptive systems. 

To show the feasibility of using policy-based reinforcement learning for self-adaptive software systems, 

we use proximal policy optimization (PPO), as a state-of-the-art actor-critic algorithm [10]. PPO 

algorithms may perform comparably or better than other policy gradient methods, while at the same 

time being easier to implement due to a simpler objective function for gradient descent than other state-

of-the-art actor-critic algorithms. PPO is used as default reinforcement learning algorithm by OpenAI. 

2.4 Prototypical implementation 
As already mentioned before, the heart of the online learning enabler are Reinforcement learning 

algorithms. For the sake of simplicity, we used the baseline implementations of policy-gradient 

algorithm provided by OpenAI1. As these baseline implementations are meant to be used with the 

environments provided by OpenAI2, we implemented an environment adapter, which makes an arbitrary 

system, whose parametrization can be formulated as a sequential decision-making problem (see above), 

to appear as an OpenAI gym environment to the algorithm. For this first prototypical implementation 

we focused on proximal policy optimization as a state-of-the-art actor-critic algorithm [11]. 

 

The architecture of the prototypical implementation of the online learning enabler can be seen in Figure 

4. PPO2, TRPO and DDPG are learning algorithms. As mentioned above, we us PPO in our solution, 

as it is a state-of-the-art actor-critic algorithm.  

 

 
Figure 4: Architecture of the prototypical implementation of the online learning enabler 

                                                      

1 https://github.com/openai/baselines 

2 https://gym.openai.com/ 
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The online learning enabler resides in a docker container which can be accessed through TCP-Port 

11211 to provide input information about the current environment state and metrics of the system to 

adapt. State variables are used to feed the step-method, so that the next timestep according to the 

underlying sequential decision-making problem is reached. The metrics are used by the reward-function 

to compute the reward. Reward and state-variables are then used to update the policy which is done by 

the PPO baseline implementation of OpenAI (usage of other algorithms like TRPO, DDPG, should 

technically also be possible). According to the underlying algorithm an update of the policy is not done 

after every timestep, because batches of experience are used for an update. The policy is then used to 

determine the next action to be evaluated in the current environment state. 

While listening on the according socket, the actions issued by the online-learning enabler are received 

by the system to be adapted.  

To make the online learning enabler properly work, several parameters and methods need to be 

configured beforehand according to the system whose adaptation should be enhanced. A guide 

describing how to configure the different parameters of the online learning enabler is given in the readme 

of the repository. In the final version of the enabler, all the parameters can be configured through a 

proper API. As described in D5.2, potential other enablers being connected to the online learning enabler 

are Genesis, ACM, Context Monitoring and Behavioural Drift Analysis and Root Cause Analysis 

(RCA). Genesis or ACM can be used for the execution of the proposed action and the delivery of proper 

information about the action space, Context Monitoring & Behavioural Drift Analysis for the proper 

delivery of the state information to feed the algorithm and RCA for further adjustment of the action 

space boundaries. 

 

The prototype can be accessed via GitLab: https://gitlab.com/enact/online-learning-enabler (A setup 

guide is provided in the readme of the repository). 

https://gitlab.com/enact/online-learning-enabler
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3 Context Monitoring and Behavioural Drift 

Analysis for Smart IoT Systems  

Context-awareness is key for Operational monitoring of Smart IoT Systems (SIS). The so-called 

“context-aware” SIS, by understanding their operational context, are thereby able to relevantly adapt 

upon environmental changes. In this context, the behavioural drift computation enabler aims at 

providing a common context monitoring tool whose innovation resides in using contextual information 

for monitoring their behaviour, detecting and, more importantly, analysing their drift over time. This 

objective raises the following research question: “How one can observe the evolution of the system from 

different contextual points of view so as to evaluate how much this behaviour is close to the expected 

one?”. 

3.1 Motivation and Illustration  
Because SIS operate within the real environment, models of their physical surroundings are required to 

design them. However, as complex as they might be, models remain abstraction of the physical world. 

This makes difficult to ensure that a SIS behaves as expected if it is unlikely to evolve as predicted by 

the models. For instance, let us consider a smart building scenario, such as the TECNALIA use case. When 

can a room be considered as effectively illuminated?  Must we verify that the luminosity level is 

exceeding a predetermined threshold? Which threshold? Everywhere in the room, or only on the tables, 

on the seats? Moreover, what happens when the context is changing, e.g., the sun is shining, windows 

are opened and shadow of the trees outside home is projected into the living room?  

 

Developers rarely ask themselves with all of these questions and assume a simple model of the world 

where switching lights within a room is good enough for ensuring expected lighting level for the whole 

space. A more realistic assumption is that one is unlikely to obtain a comprehensive model of the 

physical environment because of its complexity and changeability.  

 

Although environmental and behavioural models are needed at development time, these models are no 

longer effective for evaluating the IoT system conformance at operation time. 

 

An alternative approach, more pragmatic, consists in monitoring the behaviour of the IoT system by 

leveraging contextual information built from observations and to ensure that the observed behaviour is 

close to what designers expect.  

 

In the next section we describe the Enabler for Context Monitoring and Behavioural Drift Analysis 

(BDA). 

3.2 Conceptual solution and Highlights on Contributions  
 

Unlike classical behavioural monitoring approaches, we introduce the concept of “behavioural drift”, 

that is neither limited to the strict conformance between the observed and the expected behaviour, 

illusory in a real world, but is quantitative. Behavioural drift can be computed but also analysed in 

different ways thanks to the available contextual information, i.e., observable properties of the 

environment.  

 

In ENACT, most of the time, use case providers have their own middleware for collecting contextual 

information from sensors (e.g., TECNALIA with SMOOL, Indra with FIWARE). The Enabler provides 

context monitoring and behavioural drift analysis Tools for major IoT platforms (Figure 5). 

 

Historically, we started with a Behavioural Drift metrics, computed as a scalar value reflecting the 

“likelihood of the observed behaviour to correspond to the expected one” (result [10] prior to ENACT 

but potentially interesting as a reward for WP2 self-adaptive actuation conflict management based on 
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UDE reinforcement learning solution). For ENACT, our ambition is to develop a set of behavioural 

analysis tools providing designers with a more interpretable feedback from Operational System 

Monitoring [12]. 

 

 
Figure 5: Context Monitoring and Behavioural Drift Analysis in DevOps for IoT 

3.2.1 Overall Context Monitoring and Behavioural Drift Analysis 

Enabler 
Our contribution is about analysing SIS (Smart IoT System) behavioural drift one step beyond a 

quantitative value representing the difference between the observed and the expected behaviours of a 

Smart IoT system. Thanks to different set of sensors, different points of view on the SIS behaviour can 

be observed at a same time and provide a set of quantitative metrics. The behavioural drift metrics [10] 

is a way to overcome a Boolean conformance evaluation limited to PASS/FAIL results. Such indicators 

are well adapted for monitoring the system and detecting its behavioural drifts.  

 

Unfortunately, although we can detect and measure behavioural drifts, these metrics are not informative 

about their root cause(s), i.e., it does not explain the drifts. Such information would be valuable for the 

designers to potentially catch the possible weaknesses of the design. 

In this context, the main purpose of the behavioural drift analysis tools are to produce interpretable 

feedback in the form of models of the observed behaviour that might be compared to the expected ones. 

 
 

 
Figure 6: Enabler Overall Architecture 
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