

Grant Agreement N° 780351

Copyright © 2018 by the ENACT consortium – All rights reserved.

The research leading to these results has received funding from the European Community's H2020

Programme under grant agreement n° 780351 (ENACT).

Title: Trustworthy & agile operation of smart IoT systems – First version

Authors: Nicolas Ferry (SINTEF), Stéphane Lavirotte (CNRS), Wissam Mallouli

(Montimage), Andreas Metzger (UDE), Edgardo Montes de Oca

(Montimage), Phu Nguyen (SINTEF), Alexander Palm (UDE), Diego

Rivera (Montimage), Jean-Yves Tigli (CNRS).

Editors: Alexander Palm (UDE), Andreas Metzger (UDE)

Reviewers: Arnor Solberg (TellU), Modris Greitans (EDI)

Identifier: Deliverable # D3.2

Nature: Other

Date: 01 July 2019

Status: v1.0

Diss. level: Public

Executive Summary

Deliverable D3.2 focuses on providing the first version of the different enablers of WP3 (namely the

Online-Learning Enabler, Context Monitoring and Behavioural Drift Analysis Enabler and Root Cause

Analysis Enabler as well as the Adaptation Enactment as support for Self-Adaptation). This document

complements the deliverable of type OTHER by explaining the solutions that were developed in WP3.

This includes the conceptual design of the solutions, as well as the technical details for the different

enablers. The executable code of the enabler implementations is provided in the ENACT online repository

(https://gitlab.com/enact).

Ref. Ares(2019)4295997 - 05/07/2019

Grant Agreement N° 780351

Copyright © 2018 by the ENACT consortium – All rights reserved.

The research leading to these results has received funding from the European Community's H2020

Programme under grant agreement n° 780351 (ENACT).

In particular, for the online learning enabler, a 1st prototypical implementation of the enabler was

provided by employing policy-based reinforcement learning as the underlying learning paradigm. A

validation and demonstration of the enabler was done using the benchmark system Brownout RUBiS.

For the context monitoring & behavioural drift analysis enabler, a first implementation of this enabler

provides: (1) A tool for collecting contextual information and providing the streaming data for behavioural

drift computation; (2) A first behavioural drift analyser (BDA) for apprehending the difference between

expected and observed behaviour of the system. This first BDA is based on Gaussian Mixture Model of

the observed behaviour.

For the root cause analysis enabler, the implementation will include a preliminary database of anomalies

(at least 3 patterns), the agent plugins for at least 2 agents and the system graph construction algorithm. I

will be available during the following months.

For the adaptation enactment (GeneSIS execution engine) enabler, the initial implementation of the

orchestration and deployment enabler (modelling language and execution environment), supporting

deployment over IoT, Edge and Cloud infrastructure is available. This enabler (aka. GeneSIS) provide

initial support for the dynamic adaptation of the deployment of a SIS. A first version of its

models@run.time engine is implemented and the GeneSIS execution engine expose a set of API for third-

parties to trigger an adaptation.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 3

Members of the ENACT consortium:

SINTEF AS Norway

BEAWRE Spain

MONTIMAGE France

EVIDIAN SA France

INDRA Sistemas SA Spain

FundacionTecnalia Research & Innovation Spain

TellU AS Norway

Centre National de la Recherche Scientifique France

Universitaet Duisburg-Essen Germany

Istituto per Servizi di Ricovero e Assistenza agli Anziani Italy

Baltic Open Solution Center Latvia

Elektronikas un Datorzinatnu Instituts Latvia

Revision history
Date Version Author Comments

12/02/2019 V0.1 Alexander Palm (UDE) Table of contents and document structure

21/05/2019 V0.5 All partners Draft version of enabler sections provided

31/05/19 V0.7 All partners Update based on WP3 internal feedback

12/06/19 V0.9 All partners Refinement and completion for project-

internal review

30/06/19 V0.99 Alexander Palm (UDE) Integration of updated sections and

consolidation

04/07/19 V1.0 Andreas Metzger (UDE) Final version

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 4

Contents

CONTENTS ..4

1 INTRODUCTION ...5

1.1 CONTEXT AND OBJECTIVES .. 5
1.2 ACHIEVEMENTS ... 6
1.3 STATUS OF THE DIFFERENT ENABLERS ... 6
1.4 STRUCTURE OF THE DOCUMENT ... 7

2 ONLINE LEARNING FOR ADAPTATION SELF-IMPROVEMENT OF SMART IOT SYSTEMS 8

2.1 CONCEPTUAL SOLUTION ... 8
2.2 ONLINE LEARNING ENABLER USING POLICY-BASED RL AND MAPE-K .. 9
2.3 FORMAL BACKGROUND OF THE CONCEPTUAL SOLUTION .. 10
2.4 PROTOTYPICAL IMPLEMENTATION ... 11

3 CONTEXT MONITORING AND BEHAVIOURAL DRIFT ANALYSIS FOR SMART IOT
SYSTEMS ... 13

3.1 MOTIVATION AND ILLUSTRATION ... 13
3.2 CONCEPTUAL SOLUTION AND HIGHLIGHTS ON CONTRIBUTIONS .. 13

3.2.1 Overall Context Monitoring and Behavioural Drift Analysis Enabler 14
3.2.2 Highlights on Context Monitoring and Behavioural Drift Metrics 15
3.2.3 Highlights on Behavioural Drift Analysis .. 16

3.3 PROTOTYPICAL IMPLEMENTATION ... 19

4 ROOT-CAUSE ANALYSIS FOR SMART IOT SYSTEMS .. 22

4.1 CONCEPTUAL SOLUTION .. 22
4.1.1 Root Cause Analysis Design... 22
4.1.2 Graph-based Root Cause Analysis .. 24

4.2 PROTOTYPICAL IMPLEMENTATION ... 29

5 ADAPTATION ENACTMENT AS SUPPORT FOR SELF-ADAPTATION 30

5.1 CONCEPTUAL DESIGN ... 30
5.1.1 Overall architecture ... 30
5.1.2 The GeneSIS Comparison Engine .. 31
5.1.3 Interacting with the GeneSIS execution environment .. 33

5.2 PROTOTYPICAL IMPLEMENTATION ... 34

6 CONCLUSION & NEXT STEPS .. 35

7 REFERENCES .. 36

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 5

1 Introduction

1.1 Context and objectives
The operation of large-scale and highly distributed IoT system can easily overwhelm operation teams.

Major challenges are to improve their efficiency and the collaboration with developer teams for rapid

and agile evolution of the system. In particular, automated solutions for run-time operations are required

in order to ensure timely reaction to problems and changes of the IoT system’s environment.

WP3 aims to develop enablers for the operational part of the DevOps process (see Figure 1). WP3 thus

will provide enablers that furnish the IoT systems with capabilities to (i) monitor their status, (ii) indicate

when their behaviour is not as expected, (iii) identify the origin of the problem, and (iv) automatically

perform typical operation activities (including self-adaptation of the systems). As it is impossible to

anticipate all problems and environment situations systems may face when operating in open contexts,

there is an urgent need for mechanisms that will automatically learn and update the operation and

adaptation activities of Smart IoT Systems (SIS).

Figure 1: Focus on the Ops of the DevOps cycle

The three enablers developed by WP3 are:

• Online Learning Enabler: Because anticipating all possible context situations that SIS may

encounter during their operation is not possible, it is difficult for software developers to

determine how a run-time adaptation of the system may impact the satisfaction of the system

behaviour and of the interactions with the environment. To address this challenge, this enabler

will apply online learning techniques to improve the way a SIS adapts during its operation.

Online learning means that learning is performed at run-time, taking into account observations

about the actual system execution and system context. Online learning incrementally updates

the SIS’s knowledge base; e.g., its adaptation rules or the models based on which adaptation

decisions are made.

• Behavioural Drift Analysis Enabler: Because of the uncertain, dynamic, and partially known

nature of the physical environment, it is very difficult or even illusory to assess at run-time the

conformity of the effects of actions in this environment with deterministic models. This enabler

will provide a set of observers to monitor the behavioural drift of SIS that may arise when

operating in such open context. In addition, it will exploit the computed drift measure to

dynamically adjust the behaviour of the system.

• Root Cause Analysis Enabler: When anomalous conditions start to arise in a complex system,

determining which anomalies are related and to which part focus attention is crucial to reduce

the mean time to resolution. Thus, the root-cause analysis enabler will try to sensibly group

anomalies related to the same problem and compute likely culprits of that problem with the least

amount of human involvement possible. Since the number of open incidents in a large

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 6

deployment can be large, it will as well prioritize the different grouped problems by potential

impact, based on past experience.

Deliverable D3.2 provides the initial version of the ENACT enablers. The executable code of the

implementations is provided in the ENACT online repository (https://gitlab.com/enact) and a link to

each subproject of each enabler is provided in section 3 together with an overview of the conceptual

solution of each enabler, which builds a theoretical foundation for the implementations and a description

of the prototype. Furthermore, a documentation on how to use the enabler is provided in the readme-

files of the subprojects in GitLab. Planned and already implemented communication between the

different enablers are described in D5.2. This is the accompanying document of the software delivery

of D3.2, providing descriptions of the set of enablers delivered. Below is the overview of the presented

enablers:

1.2 Achievements

Objectives Achievements

Provide 1st version of each enabler of WP3

• Online Learning

• Context Monitoring & Behavioural Drift

Analysis

• Root Cause Analysis

Based on the theoretical foundations gained

throughout the first half of the project we

developed initial versions of the different

enablers of WP3 and provided them in an online

repository. The status and progress of each of

these is described in Section 1.3.

Provide description of conceptual solution of

each enabler

Based on the finding during the first half of the

project we developed a conceptual solution for

each enabler which laid the foundation for the

corresponding enabler implementation. The

status and progress of each of these is described

in Section 1.3.

Provide documentation We provided a documentation for each enabler

stating how to use. The status and progress of

each of these is described in Section 1.3.

1.3 Status of the different enablers
The following table gives a brief overview of WP3’s enablers and their current status:

Enabler Status

Online Learning 1st prototypical implementation of the enabler.

Demonstration of the enabler has been done using

Brownout RUBiS. The enabler is able to support

the adjustment of a system parameter that

influences the trade-off between two contrasting

quality requirements during runtime. Possible

interfaces with other enablers have been defined

in D5.2. Development of REST API is ongoing.

Demonstration of usability in use case (cf. D1.1)

is pending.

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 7

Context Monitoring & Behavioural Drift

Analysis

A first implementation of this enabler provides:

(1) A tool for collecting contextual information

and providing the streaming data for behavioural

drift computation

(2) A first behavioural drift analyser (BDA) for

apprehending the difference between expected

and observed behaviour of the system. This first

BDA is based on Gaussian Mixture Model of the

observed behaviour.

Root Cause Analysis A first version of the RCA enabler is expected to

be available during the following months. This

implementation will include a preliminary

database of anomalies (at least 3 patterns), the

Agent plugins for at least 2 agents and the system

graph construction algorithm.

Adaptation enactment (GeneSIS execution

engine)

The initial implementation of the Orchestration

and deployment enabler (modelling language and

execution environment), supporting deployment

over IoT, Edge and Cloud infrastructure. This

enabler (aka. GeneSIS) provide initial support for

the dynamic adaptation of the deployment of a

SIS. A first version of its models@run.time

engine is implemented and the GeneSIS

execution engine expose a set of API for third-

parties to trigger an adaptation. Future work will

focus first on extending these APIs with support

for high level adaptation commands (e.g.,

software migration).

1.4 Structure of the document
The remainder of the document is structured as follows. After a brief introduction, Sections 2-4 provide

the conceptual solutions for each of the enablers of WP3 and a description of the prototypical

implementation of the enablers. Section 5 describes how the self-adaptation is supported by adaptation

enactment. Section 6 concludes the document and gives a brief overview of planned next steps.

mailto:models@run.time

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 8

2 Online Learning for Adaptation Self-

improvement of Smart IoT Systems

In this section the conceptual solution and the prototypical implementation of the online learning enabler

is described.

2.1 Conceptual solution
A well-known reference model for self-adaptive systems is the MAPE-K model [1-3], which is depicted

in Figure 1. Following this reference model, a self-adaptive software system can be logically structured

into two main elements: the system logic (aka. the managed element) and the self-adaptation logic (the

autonomic manager).

Figure 1: MAPE-K reference model for self-adaptive systems (based on [1])

As shown in Figure 1, the self-adaptation logic can be further structured into four main conceptual

activities that leverage a common knowledge base [4]. The knowledge base includes information about

the managed system (e.g., encoded in the form of models at run time), its environment, and its adaptation

goals and adaptation policies (e.g., expressed as rules). The four activities are concerned with monitoring

the system logic and the system’s environment via sensors, analysing the monitoring data to determine

the need for an adaptation, planning adaptation actions, and executing these adaptation actions via

actuators, thereby modifying the system logic at run time.

Figure 2 shows the basic reference model for reinforcement learning [5-7]. In this model, a so-called

agent (i.e., system in our case) learns how to perform optimally in an unknown environment.

Figure 2: Conceptual model of reinforcement learning (based on [7])

In general, reinforcement learning techniques allow solving sequential decision-making problems of an

agent by learning the effectiveness of the agent’s actions through interactions with the agent’s

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 9

environment [7, 8]. At each point t, an agent observes the current state st of its environment. The agent

then selects an action at, which may cause the environment to change to state st+1. In each environment

state st, the agent receives feedback in the form of a reward rt. The goal of reinforcement learning is to

learn an action-selection policy π that optimizes the agent’s cumulative (long-term) rewards. Depending

how rewards are defined for the concrete learning task, the agent’s goal may be to maximize or minimize

cumulative rewards.

2.2 Online learning enabler using policy-based RL and MAPE-K
Our overall approach is to enhance the MAPE-K loop with policy-based reinforcement learning. Below,

we first explain how we conceptually integrate elements of the MAPE-K loop with elements of

reinforcement learning, before providing a formalization and implementation of our approach.

Finally, we explain the implementation our approach using a concrete policy-based reinforcement

learning algorithm.

Figure 3 shows the conceptual architecture of our approach and how the elements of policy-based

reinforcement learning are integrated into the MAPE-K loop.

Figure 3: Conceptual architecture of integrating policy-based reinforcement learning with the self-adaptation logic

The overlapping area (dark-gray in Figure 3) shows how in our approach the action-selection of

reinforcement learning takes the place of the analyze and plan activities of the MAPE-K reference

model. In particular, the learned action-selection policy π takes the role of the knowledge base of the

self-adaptive system. At run time the policy is used by the autonomic manager to select an adaptation

action at based on the current state st, which is determined by the monitoring activity.

This means action selection determines whether there is a need for an adaptation (given the current state)

and plans (i.e., selects) the respective adaptation action to execute.

As we explained before, the monitoring activity monitors the system logic and the system’s

environment. This means that the state st may be determined using observations of both the system’s

environment and the system logic itself. This is an important difference from the basic reinforcement

learning model (as introduced in the beginning), where only observations from the agent’s environment

are considered to determine the state st.

As a result of an action at, the state may change to state st+1. This new state is used to trigger the

learning process to deliver an updated policy πt+1. Input to the policy update are the new state st+1

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 10

together with the reward rt+1 obtained in the new state. In our architecture this reward is also computed

by the monitoring activity, as this activity has access to all sensor information collected from the system

and its environment.

2.3 Formal background of the conceptual solution
The sequential decision-making problem to be solved by reinforcement learning can be formalized as a

Markov decision process, which defines the interactions between an agent and its environment in terms

of states, actions, and rewards [7].

A Markov decision processes is formally defined as MDP = (S, A, T, R) with

− S being a set of environment states s ∈ S,

− A being a set of possible actions a ∈ A that lead to a transition among environment states, i.e.,

from a state st to a successor state st+1,

− T : S × A × S → [0, 1] being the transition probability among states with T (st, at, st+1) =

Pr(st+1|st, at), which gives the probability that action at in state st will lead to a state st+1,

− R : S × A× S → IR, a reward function which specifies what numerical reward the agent receives

when performing a particular action at in a particular state st that leads to successor state st+1.

The solution to a Markov decision process is a so-called optimal policy π, which maps states to actions,

such that the future reward is maximized. More concretely this policy is defined as π : S × A → [0, 1],

which gives the probability of taking action a in state s, i.e., π(s, a) = Pr(a|s).

Policy-based reinforcement learning relies on a parametrized policy in the form πθ(s, a) = Pr(a s, θ),

where θ IRd is a vector of the policy’s parameters. As an example, if the policy is represented as an

artificial neural network, the weights of the network are the policy parameters [9]. The policy parameters

can be learned via so called policy gradient methods. Policy gradient methods update the policy

according to the gradient of a given objective function [7, 9], which can be based on the average reward

per learning step

Policy-based reinforcement learning does not rely on a value function for action selection and thus does

not require quantization of the state space. The concrete action is selected via sampling over the

probabilistic policy πθ. Because of this sampling and the probabilistic nature of the policy, policy-based

reinforcement learning does not suffer from the exploration/exploitation dilemma and thus does not

require manually fine-tuning the balance between exploitation and exploration. Exploration is

automatically performed, because sampling over the probabilistic policy leads to some degree of random

action selection.

With respect to formalizing the self-adaptation problem as a Markov decision process, we know the set

of possible actions A. These are the system’s adaptation actions, i.e., possible ways the system may be

adapted using the system logic’s actuators. As an example, we may know which optional system features

of a web application may be deactivated in case of performance problems. We also know the set of

potential environment states S. That is, even if we do not know the exact environment states a system

may face at run time (due to design time uncertainty in anticipating all potential environment changes),

we at least know the typical state variables. As an example, even if we do not know the exact workload

(and maybe not even the maximum workload) a web application may face, we can express a state

variable workload w ∈ IN.

In contrast, we do not know T due to design time uncertainty about how adaptation impacts on system

quality. We thus employ a model- free variant of policy-based reinforcement learning, which does not

require a model of the environment (i.e., known T) but can learn directly from interactions with the

system’s environment.

Finally, defining the reward function R depends on the concrete learning goal to achieve. We define a

concrete reward function as part of our evaluation.

To select a concrete policy-based reinforcement learning algorithm for our implementation, we need to

consider that, from the point of view of reinforcement learning, self-adaptation is a continuing task.

This means that the adaptation process cannot be naturally broken down into episodes, which start from

file:///C:/Users/kelle/Downloads/MainPaper.docx

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 11

an initial state s0 and terminate after a certain number of actions in a known terminal state [7]. The

adaptation process goes on continually. Value-based reinforcement learning algorithms like Q-Learning

and SARSA are well-suited for continuing learning tasks, because they use bootstrapping during the

learning process. Bootstrapping means that the algorithms update the knowledge base after each time

step t without waiting for a final outcome, i.e., without waiting for reaching a terminal state. Actor-critic

algorithms are a variant of policy- based reinforcement learning algorithms that also use bootstrapping

and thus are suited for continuing tasks and thus for self-adaptive systems.

To show the feasibility of using policy-based reinforcement learning for self-adaptive software systems,

we use proximal policy optimization (PPO), as a state-of-the-art actor-critic algorithm [10]. PPO

algorithms may perform comparably or better than other policy gradient methods, while at the same

time being easier to implement due to a simpler objective function for gradient descent than other state-

of-the-art actor-critic algorithms. PPO is used as default reinforcement learning algorithm by OpenAI.

2.4 Prototypical implementation
As already mentioned before, the heart of the online learning enabler are Reinforcement learning

algorithms. For the sake of simplicity, we used the baseline implementations of policy-gradient

algorithm provided by OpenAI1. As these baseline implementations are meant to be used with the

environments provided by OpenAI2, we implemented an environment adapter, which makes an arbitrary

system, whose parametrization can be formulated as a sequential decision-making problem (see above),

to appear as an OpenAI gym environment to the algorithm. For this first prototypical implementation

we focused on proximal policy optimization as a state-of-the-art actor-critic algorithm [11].

The architecture of the prototypical implementation of the online learning enabler can be seen in Figure

4. PPO2, TRPO and DDPG are learning algorithms. As mentioned above, we us PPO in our solution,

as it is a state-of-the-art actor-critic algorithm.

Figure 4: Architecture of the prototypical implementation of the online learning enabler

1 https://github.com/openai/baselines

2 https://gym.openai.com/

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 12

The online learning enabler resides in a docker container which can be accessed through TCP-Port

11211 to provide input information about the current environment state and metrics of the system to

adapt. State variables are used to feed the step-method, so that the next timestep according to the

underlying sequential decision-making problem is reached. The metrics are used by the reward-function

to compute the reward. Reward and state-variables are then used to update the policy which is done by

the PPO baseline implementation of OpenAI (usage of other algorithms like TRPO, DDPG, should

technically also be possible). According to the underlying algorithm an update of the policy is not done

after every timestep, because batches of experience are used for an update. The policy is then used to

determine the next action to be evaluated in the current environment state.

While listening on the according socket, the actions issued by the online-learning enabler are received

by the system to be adapted.

To make the online learning enabler properly work, several parameters and methods need to be

configured beforehand according to the system whose adaptation should be enhanced. A guide

describing how to configure the different parameters of the online learning enabler is given in the readme

of the repository. In the final version of the enabler, all the parameters can be configured through a

proper API. As described in D5.2, potential other enablers being connected to the online learning enabler

are Genesis, ACM, Context Monitoring and Behavioural Drift Analysis and Root Cause Analysis

(RCA). Genesis or ACM can be used for the execution of the proposed action and the delivery of proper

information about the action space, Context Monitoring & Behavioural Drift Analysis for the proper

delivery of the state information to feed the algorithm and RCA for further adjustment of the action

space boundaries.

The prototype can be accessed via GitLab: https://gitlab.com/enact/online-learning-enabler (A setup

guide is provided in the readme of the repository).

https://gitlab.com/enact/online-learning-enabler

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 13

3 Context Monitoring and Behavioural Drift

Analysis for Smart IoT Systems

Context-awareness is key for Operational monitoring of Smart IoT Systems (SIS). The so-called

“context-aware” SIS, by understanding their operational context, are thereby able to relevantly adapt

upon environmental changes. In this context, the behavioural drift computation enabler aims at

providing a common context monitoring tool whose innovation resides in using contextual information

for monitoring their behaviour, detecting and, more importantly, analysing their drift over time. This

objective raises the following research question: “How one can observe the evolution of the system from

different contextual points of view so as to evaluate how much this behaviour is close to the expected

one?”.

3.1 Motivation and Illustration
Because SIS operate within the real environment, models of their physical surroundings are required to

design them. However, as complex as they might be, models remain abstraction of the physical world.

This makes difficult to ensure that a SIS behaves as expected if it is unlikely to evolve as predicted by

the models. For instance, let us consider a smart building scenario, such as the TECNALIA use case. When

can a room be considered as effectively illuminated? Must we verify that the luminosity level is

exceeding a predetermined threshold? Which threshold? Everywhere in the room, or only on the tables,

on the seats? Moreover, what happens when the context is changing, e.g., the sun is shining, windows

are opened and shadow of the trees outside home is projected into the living room?

Developers rarely ask themselves with all of these questions and assume a simple model of the world

where switching lights within a room is good enough for ensuring expected lighting level for the whole

space. A more realistic assumption is that one is unlikely to obtain a comprehensive model of the

physical environment because of its complexity and changeability.

Although environmental and behavioural models are needed at development time, these models are no

longer effective for evaluating the IoT system conformance at operation time.

An alternative approach, more pragmatic, consists in monitoring the behaviour of the IoT system by

leveraging contextual information built from observations and to ensure that the observed behaviour is

close to what designers expect.

In the next section we describe the Enabler for Context Monitoring and Behavioural Drift Analysis

(BDA).

3.2 Conceptual solution and Highlights on Contributions

Unlike classical behavioural monitoring approaches, we introduce the concept of “behavioural drift”,

that is neither limited to the strict conformance between the observed and the expected behaviour,

illusory in a real world, but is quantitative. Behavioural drift can be computed but also analysed in

different ways thanks to the available contextual information, i.e., observable properties of the

environment.

In ENACT, most of the time, use case providers have their own middleware for collecting contextual

information from sensors (e.g., TECNALIA with SMOOL, Indra with FIWARE). The Enabler provides

context monitoring and behavioural drift analysis Tools for major IoT platforms (Figure 5).

Historically, we started with a Behavioural Drift metrics, computed as a scalar value reflecting the

“likelihood of the observed behaviour to correspond to the expected one” (result [10] prior to ENACT

but potentially interesting as a reward for WP2 self-adaptive actuation conflict management based on

ENACT
Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems Deliverable # D3.1

 Public Final version 1.0, 30/06/2019 14

UDE reinforcement learning solution). For ENACT, our ambition is to develop a set of behavioural

analysis tools providing designers with a more interpretable feedback from Operational System

Monitoring [12].

Figure 5: Context Monitoring and Behavioural Drift Analysis in DevOps for IoT

3.2.1 Overall Context Monitoring and Behavioural Drift Analysis

Enabler
Our contribution is about analysing SIS (Smart IoT System) behavioural drift one step beyond a

quantitative value representing the difference between the observed and the expected behaviours of a

Smart IoT system. Thanks to different set of sensors, different points of view on the SIS behaviour can

be observed at a same time and provide a set of quantitative metrics. The behavioural drift metrics [10]

is a way to overcome a Boolean conformance evaluation limited to PASS/FAIL results. Such indicators

are well adapted for monitoring the system and detecting its behavioural drifts.

Unfortunately, although we can detect and measure behavioural drifts, these metrics are not informative

about their root cause(s), i.e., it does not explain the drifts. Such information would be valuable for the

designers to potentially catch the possible weaknesses of the design.

In this context, the main purpose of the behavioural drift analysis tools are to produce interpretable

feedback in the form of models of the observed behaviour that might be compared to the expected ones.

Figure 6: Enabler Overall Architecture

	Contents
	1 Introduction
	1.1 Context and objectives
	1.2 Achievements
	1.3 Status of the different enablers
	1.4 Structure of the document

	2 Online Learning for Adaptation Self-improvement of Smart IoT Systems
	2.1 Conceptual solution
	2.2 Online learning enabler using policy-based RL and MAPE-K
	2.3 Formal background of the conceptual solution
	2.4 Prototypical implementation

	3 Context Monitoring and Behavioural Drift Analysis for Smart IoT Systems
	3.1 Motivation and Illustration
	3.2 Conceptual solution and Highlights on Contributions
	3.2.1 Overall Context Monitoring and Behavioural Drift Analysis Enabler
	3.2.2 Highlights on Context Monitoring and Behavioural Drift Metrics
	3.2.3 Highlights on Behavioural Drift Analysis
	3.2.3.1 First Behavioural Drift Analyzer v1 for ENACT

	3.3 Prototypical implementation

	4 Root-Cause Analysis for Smart IoT Systems
	4.1 Conceptual solution
	4.1.1 Root Cause Analysis Design
	4.1.1.1 Probes and Agents
	4.1.1.2 Data Collector and Databases
	4.1.1.3 Diagnoser
	4.1.1.4 Anomalous Pattern Database

	4.1.2 Graph-based Root Cause Analysis
	4.1.2.1 System Graph Module.
	4.1.2.2 Anomalous Region Module
	4.1.2.3 Patterns Module
	4.1.2.4 Similarity Module
	4.1.2.5 Graph Similarity Algorithm
	4.1.2.5.1 General Definitions
	4.1.2.5.2 Problem statement
	4.1.2.5.3 Similarity Between Two Nodes or Edges
	4.1.2.5.4 Similarity Between Two Attributes

	4.1.2.6 Building the System Graph via Monitoring
	4.1.2.6.1 Nodes
	4.1.2.6.2 Edges

	4.2 Prototypical implementation

	5 Adaptation enactment as support for self-adaptation
	5.1 Conceptual design
	5.1.1 Overall architecture
	5.1.2 The GeneSIS Comparison Engine
	5.1.3 Interacting with the GeneSIS execution environment

	5.2 Prototypical implementation

	6 Conclusion & next steps
	7 References

